CIS 1200 Midterm I February 16, 2024

Name: _____

PennKey (penn login id, e.g., sweirich):

I certify that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Signature:	Date:
0	

- Please wait to begin the exam until you are told it is time for everyone to start.
- When you begin, please start by writing your PennKey at the bottom of all the odd-numbered pages in the rest of the exam.
- There are 100 total points. The exam length is 60 minutes.
- You may use a single, handwritten sheet of notes during the exam.
- For coding problems: aim for accurate syntax, but we will not grade your code style for indentation, spacing, etc.
- There are 13 pages in the exam and an appendix for your reference. Do not write any answers in the appendix as they will not be graded.
- Do not spend too much time on any one question. Be sure to recheck all of your answers.
- Good luck!

1. **Types** (16 points total)

For each OCaml value below, fill in the missing type annotations or else write "ill typed" if there is no way to fill in the annotation that does not cause a type error.

Your answer should be the *most generic* type that OCaml would infer for the value—*i.e.*, if int list and bool list are both possible types of an expression, you should write 'a list.

Some of these expressions refer to the types and functions defined in the appendix.

We've done the first one for you.

let	ans:	int list	_ = [3;	1]	
(a)	<pre>let ans: fun (x</pre>	: bool) -> x x		=	
(b)	let ans: 6 + if	3 < 5 then 4 else 1		=	
(c)		.::"world"::[]::[]		=	
(d)		false], 5)		_ =	
(e)	begin r []	<pre>match [2; 4; 5] with -> "empty" ::tl -> hd</pre>		_ =	
(f)		x : int) -> fun (y : int	t) -> x	= > y)	3000
(g)	let ans: fold (1	fun (x : int list) (acc	: int	= list)	-> x

(h) let ans: _____ =
 fun z -> transform (fun (x, y) -> x::y) z

@ acc) []

2. Binary tree representation and recursion (18 points total)

This problem asks you to compare two different definitions of trees, related to those you have seen in the homework assignments.

The first tree type is a generic version of labeled_tree, a data type used in the second homework assignment.

```
(* The labelled tree type from HW2, made generic *)
type 'a labeled_tree =
    | LLeaf of 'a
    | LNode of 'a labeled_tree * 'a * 'a labeled_tree
```

(a) (4 points) Which of these trees can be represented using the labeled_tree type?

i.		ii.	iii.	iv.
2 / 1	\ 3	3 / 1	4 / \ 1 6 / \ 5 7	4 / \ 1 6 / 5
True 🗆 True 🗆 True 🗆 True 🗆	False □ False □ False □ False □	i. ii. iii. iv.		

(b) (4 points) What do we know about all labeled_trees?

True 🗆	False 🗆	The tree is a binary search tree.
True 🗆	False 🗆	The tree contains at least one value.
True 🗆	False 🗆	The tree contains an even number of values.
True 🗆	False 🗆	All nodes in the tree have either two empty subtrees or two
		nonempty subtrees. Question removed from the exam.

(c) (10 points) Now compare the labeled_tree type to the generic binary tree type that you used in the third homework assignment, repeated in the appendix on page 14.

The following function translates a tree to a labeled_tree of the same structure.

However, note that this function fails on some inputs (using failwith).

Implement a generic function, called is_labeled_tree, that returns true exactly when this function succeeds. In other words, if is_labeled_tree function returns true for some tree, then to_labeled_tree should return a labeled_tree for that input. Conversely, if is_labeled_tree returns false, then to_labeled_tree should fail on that input.

```
(* Can t be represented as a labeled_tree? *)
let rec is_labeled_tree (t : 'a tree) : bool =
```

3. Binary Search Trees (32 points total)

This problem concerns a variation of binary search trees called *sized binary search trees*, or *SBST* s for short.

A *sized tree* contains an extra int at each node. We represent a sized tree in OCaml using the following datatype definition.

```
type 'a sized_tree =
    | SEmpty
    | SNode of 'a sized_tree * ('a * int) * 'a sized_tree
```

A tree satisfies the **size invariant** if the integer stored at each node is one more than the sum of the sizes of its left and right subtrees. The size of a tree is defined as follows.

```
(* access the size of the tree *)
let size (t:'a sized_tree) : int =
    begin match t with
    | SEmpty -> 0
    | SNode (_, (_, sz),_) -> sz
    end
```

We can check whether a tree satisfies the size invariant using the following function.

```
(* make sure that the size values are correct in the tree *)
let rec is_sized_tree (t : 'a sized_tree) : bool =
    begin match t with
    | SEmpty -> true
    | SNode (lt, (v, sz), rt) ->
        sz = size lt + 1 + size rt &&
        is_sized_tree lt && is_sized_tree rt
    end
```

(a) (4 points)

If a tree satisfies the *size invariant*, then the size function will always return the number of values stored in the tree.

True \Box False \Box

If a tree does not satisfy the *size invariant*, then the size function always will return a number that is different from the number of values stored in the tree.

```
True \Box False \Box
```

(b) (8 points) A SBST is a tree that satisfies both the size and binary search tree invariants. To avoid confusing values and sizes in this problem, we will only work with trees that contain string values. Recall that in OCaml, strings can be compared using the < operator, and that "a" < "b" evaluates to true. If a tree containing strings satisfies the BST invariant, then the strings will be stored in alphabetical (dictionary) order.

We draw sized_trees by including both the value and size at each node, separated by a comma. For example, one SBST is

s1 = ("d", 3) / \ ("b",1) ("e",1)

and can be expressed in OCaml as

Which of the following trees are SBSTs?

 □ violates the BST invariant □ violates the size invariant □ is a SBST 	s2 = ("d", 4) / \ ("b",1) ("e",1)
 □ violates the BST invariant □ violates the size invariant □ is a SBST 	s3 = ("d", 4) / \ ("b",2) ("e",1) \ ("f",1)
 violates the BST invariant violates the size invariant is a SBST 	s4 = ("d", 3) / \ ("b",1) ("e",1) \ ("f", 1)
 □ violates the BST invariant □ violates the size invariant □ is a SBST 	s5 = ("d", 4) / \ ("b",1) ("e",2) \ ("f", 1)

- (c) (8 points) Recall from HW3 that a tree is *perfect* when
 - every leaf is the same distance from the root
 - every node has either 0 or 2 children.

If a tree satisfies the size invariant, there is a simple way to determine if it is a perfect tree, that does not require calculating the distance of each leaf to the root. Complete the following function, that does so. Your answer must use the size function defined above and may assume that the input tree satisfies the size invariant.

| SNode (lt, (x, sz), rt) ->

end

(d) (12 points) The insertion function for SBSTs must maintain both the size invariant and the BST invariant. However, the following definition of insert is **incorrect**.

```
let rec bad_insert (t:'a sized_tree) (n:'a) : 'a sized_tree =
begin match t with
    | SEmpty -> SNode(SEmpty, (n, 1), SEmpty)
    | SNode(lt, (x, sz), rt) ->
    if x = n then t
    else if n < x then
        SNode (bad_insert lt n, (x, sz + 1), rt)
    else
        SNode(lt, (x, sz + 1), bad_insert rt n)
end</pre>
```

First, complete a test case that demonstrates when this function returns an incorrect tree compared to good_insert, the *correct* version of the function (not provided). The first blank should be a string that produces different results for bad_insert and good_insert. The second and third blanks should be the trees that result from these insertions, and one of (s1)-(s5), defined in part (b) and repeated in the appendix.

```
;; run_test "bad_insert fails" (fun () ->
    let str : string = ______ in
    let bad = bad_insert s1 str in
    let good = good_insert s1 str in
    not (bad = good) &&
    bad = _____ && good = _____)
```

Now, complete a test case that shows that bad_insert sometimes works. Fill in the string to insert and the resulting tree, which should be one of the trees (s1)-(s5).

```
;; run_test "bad_insert works" (fun () ->
    let str : string = ______ in
    let bad = bad_insert s1 str in
    let good = good_insert s1 str in
    bad = good && bad = _____ )
```

4. Abstract Data Types and Higher-Order Functions (34 points total)

At ACME, there are employees whose job it is to shop for items that have been ordered online. For each *order*, these shoppers need to know the name of the *customer*, the *items* that the customer wants, and the *priority* of the order (some orders are rush jobs!). We'd like to keep track of this information for the shoppers in a *todo list* and support the following operations (among others).

- There is an empty todo list.
- Orders can be added to the todo list via the add_order function.
- The shopper can access the next items to shop for and remove them from the todo list via next_items.

For clarity in the code, we will define the following type abbreviations, and use a tuple of a *priority, customers*, and their *item list*. to represent an *order*.

```
type priority = int (* higher is better *)
type customer = string (* name of the customer *)
type item = string (* name of a grocery item *)
```

For example, we can create orders for Maddie and Julia as below.

```
let order1 = (1, "Julia", ["Apple"; "Banana"; "Pear"])
let order2 = (2, "Maddie", ["Turkey"; "Chicken"; "Beans"])
```

We can then construct a todo list using the operations add_order and empty described above.

let list1 = add_order order1 (add_order order2 empty)

Finally, we can define a test case that demonstrates that because Maddie's order has higher priority than Julia's, her items should be shopped for next.

the behavior of next_items.

```
;; run_test "next_items" (fun () ->
    let (items, _) = next_items list1 in
    items = ["Turkey"; "Chicken"; "Beans"])
```

(There is nothing to do on this page.)

- (a) We plan to represent a *todo list* using a list of orders, with the following representation invariant:
 - The orders are sorted by priority in the todo list, with the highest priority first.
 - A customer may have multiple orders in the todo list, but no two of their orders can have the same priority.

There may be multiple orders in the list with the same priority, as long as they are for different customers.

To safely maintain these invariants, we will use an *abstract data type*. This question asks you about various options for the interface of this abstract type. We can characterize these possible designs as:

- Unusable: lacking functionality: no *client* code could usefully call functions of the interface to achieve a non-trivial result
- **Unsafe**: usable, but that doesn't ensure implementation invariants are preserved: the client can provide inputs that break implementation invariants
- Good: usable and able to enforce invariants

For each of the following signatures, mark the box next to the characterization that best describes it. Additionally, if it is *not* "Good", briefly describe why you chose that choice. For example, if a signature is "Unsafe" explain how a client could break the implementation invariant. *Use each characterization exactly once!*

You may assume that the types priority, customer and item have been defined as on page 9.

(4 points)

```
module type GROCERYORDERS = sig
  type order = priority * customer * item list
  type todo_list
  val empty : todo_list
  val add_order : order -> todo_list -> todo_list
  val next_items: todo_list -> item list * todo_list
end
```

 \Box Unusable \Box Unsafe \Box Good

Explai	nation:
I	

```
(4 points)
```

```
module type GROCERYORDERS = sig
 type order = priority * customer * item list
 type todo_list = order list
 val empty : todo_list
 val add_order: order -> todo_list -> todo_list
 val next_items: todo_list -> item list * todo_list
 end
\Box Unusable \Box Unsafe \Box Good
Explanation:
(4 points)
module type GROCERYORDERS = sig
 type order
 type todo_list
 val empty : todo_list
 val add_order: order -> todo_list -> todo_list
 val next_items: todo_list -> item list * todo_list
 end
\Box Unusable \Box Unsafe \Box Good
Explanation:
```

Now consider the implementations of operations inside a module that starts with the following type definitions, in addition to the ones shown on page 9.

```
type order = priority * customer * item list
type todo_list = order list
```

(b) (12 points) Complete the following implementation of a function that adds a new order to a todo list. Your function may assume that the todo list satifies the invariants shown on page 10. To maintain these invariants, if a customer already has an order with the same priority in the list, the new items should be appended after their original items. Furthermore, any orders by other customers in the todo list with the same priority should come before the newly added order.

et rec ad	dd_order (new_order :)
	(lst :) :
begin ma	atch 1st with
[] -	->
(p1,	, c1, i1) :: t1 ->
let	(p2, c2, i2) = new_order in
if _	
	then (p1, c1, i1 @ i2) :: tl
else	e if
	then (p2, c2, i2) :: (p1, c1, i1) :: tl
else	e

end

Implement the next function using either transform or fold. Your answer may not be recursive, nor may it call other functions that use list recursion except for the @ operator.

(c) (10 points) Get all items for a given customer from *all* of their orders. The highest priority items should appear first in the output list. If there is no order for the customer, return an empty list. You may assume that the input todo list satisfies the invariants.

let get_items (c1 : customer) (l : todo_list) : item list =

A Generic Binary Search Trees

```
(* Generic binary trees, from HW 3 *)
type 'a tree =
 | Empty
 | Node of 'a tree * 'a * 'a tree
let rec lookup (t:'a tree) (n:'a) : bool =
 begin match t with
    | Empty -> false
    | Node(lt, x, rt) ->
     x = n || if n < x then lookup lt n else lookup rt n
  end
(* Inserts n into the binary search tree t *)
let rec insert (t:'a tree) (n:'a) : 'a tree =
 begin match {\tt t} with
    | Empty -> Node(Empty, n, Empty)
    | Node(lt, x, rt) ->
      if x = n then t
      else if n < x then Node (insert lt n, x, rt)
      else Node(lt, x, insert rt n)
  end
```

B Higher-Order List Processing Functions

Here are the higher-order list processing functions:

C Sized Binary Search Trees

```
type 'a sized_tree =
 | SEmpty
 | SNode of 'a sized_tree * ('a * int) * 'a sized_tree
(* access the size of the tree *)
let size (t:'a sized_tree) : int =
 begin match t with
 | SEmpty -> 0
 | SNode (_, (_, sz),_) -> sz
 end
(* make sure that the size values are correct in the tree *)
let rec is_sized_tree (t : 'a sized_tree) : bool =
 begin match t with
 | SEmpty -> true
 | SNode (lt, (v, sz), rt) ->
    sz = size lt + 1 + size rt \&
    is_sized_tree lt && is_sized_tree rt
  end
```

Example sized binary trees, used in question 3.