CIS 1200 Midterm I ~ February 17, 2025

Name:

PennKey (penn login id, e.g., sweirich):

I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

* Please wait to begin the exam until you are told it is time for everyone to start.

* When you begin, please start by writing your PennKey at the bottom of all the odd-numbered
pages in the rest of the exam.

* There are 120 total points. The exam length is 60 minutes.
* You may use a single, handwritten sheet of notes during the exam.

* For coding problems, aim for accurate syntax, but we will not grade your code for indenta-
tion, spacing, etc.

* There are 16 pages in the exam and an appendix for your reference. Do not write any answers
in the appendix as they will not be graded.

* Do not spend too much time on any one question. Be sure to recheck all of your answers.

¢ Good luck!

1. Types (24 points total)

For each OCaml value below, fill in the missing type annotations or else write “ill typed” if
there is no way to fill in the annotation that does not cause a type error.

Your answer should be the most generic type that OCaml would infer for the value—i.e.,
if int 1ist and bool 1list are both possible types of an expression, you should write

"a list.

Some of these expressions refer to the types and functions defined in Appendix A.

We’ve done the first one for you.

let example: int list =
[4; 5]

(a) let ans: =
(true, false, 8)

(b) 1et ans: -
begin match [1; 2; 0] with
I 1 —> [-1]
| hd :: t1 -> tl1
end

(c) let ans: =
transform (fun x —> x mod 2 = 0) [1l; 2; 5]

(d) let ans: =
3 +. 2

(e) let ans: =
if true then "ocaml" else 1200

(f) 1et ans: =
fun x -> begin match x with
I [=> [
| (h :: tl) —> (h :: h :: tl)
end

(g) let ans: =
(fun x y -> (x, "ocaml", y)) 1200 120

(h) 1let ans: =
fun x -> fold x [3; 5; 6]

2. Tree recursion (24 points total)

Consider a version of binary trees, called branchy_trees where data is stored only in leaf
nodes. Like evolutionary trees from Homework 2, branches do not include labels. Unlike
evolutionary trees, any subtree can be Empty.
type 'a branchy_tree =

| Empty

| Leaf of "a

| Branch of ’'a branchy_tree » "a branchy_tree

For clarity, when we draw branchy trees, we use the symbol + to indicate a branch and the
symbol « to indicate an empty subtree. For example, this tree

let tree : int branchy_tree =
Branch (Leaf 1, Branch (Empty, Leaf 2))

would be drawn as:

+

/ A\
1 +

/ N\
* 2

(a) How would you represent the following tree in OCaml?

+

/ \
+ 3
/ \
1 2

(3 points) Check one.

[l 1let tree_1 : int branchy_tree =
Branch (Branch (Leaf 1, Leaf 2), Leaf 3)

[l let tree_l : int branchy_tree =
Branch (Branch (Leaf 1, Leaf 2), Branch (Leaf 3, Empty))

[l 1let tree_1 : int branchy_tree =
Branch (Leaf 1, Branch (Leaf 2, Leaf 3))

PennKey: 3

(b) How would you represent the following tree in OCaml?

+

/ N\
/N
+ +
/ A\ /\
* 1 + *
/\
2 3

(3 points) Check one.

[l let tree_3 : int branchy_tree =
Branch (Leaf 1,
Branch (Branch (Leaf 2, Leaf 3), Empty))

[l 1let tree_3 : int branchy_tree =
Branch (Branch (Leaf 1, Empty),
Branch (Branch (Leaf 2, Empty), Leaf 3))

[] let tree_3 : int branchy_tree =
Branch (Branch (Empty, Leaf 1),
Branch (Branch (Leaf 2, Leaf 3), Empty))

(c) (4 points) Consider the function cons, shown below.

let rec cons (x : "a) (t : 'a branchy_tree) : "a branchy_tree =
begin match t with
| Empty —-> Leaf x
| Leaf y —> Branch (Leaf x, Leaf vy)
| Branch (1, r) -> Branch (cons x 1, r)
end

Which of the following trees corresponds to this OCaml expression:

let tree_4 = cons 1 (cons 2 (cons 3 Empty))

Circle one option below (i) - (iv).

(1) + (11) +
/N / N\
+ 3 1+
/ N\ / N\
1 2 2 +
/\
3 *
(1id) + (iv) +
/ N\ /\
1 + + *
/ N\ / N\
2 3 + 3
/\
1 2

PennKey:

(d) (14 points) The prune function tidies up branching trees by removing as many occur-
rences of Empty as possible. In its result, no Branch should have an Empty subtree.

For example, both tree_2 and tree_3, should produce the tree on the right when

pruned.
tree_2 tree_3 pruned
+ + +
/\ /N /\
1 + / \ 1 +
/\ + + /\
2 + /\ /\ 2 3
/ \ * 1 + *
* 3 /\
2 3

The prune function is implemented through tree recursion.

let rec prune (t : "a branchy_tree) : ’"a branchy_tree =
begin match t with
| Empty —-> Empty
| Leaf x —> Leaf x
| Branch (tl, t2) -> helper (prune tl) (prune t2)
end

Note that prune delegates to a helper function in the Branch case. Complete an appro-
priate definition for helper below.

let helper (tl : 'a branchy_tree)
(t2 : "a branchy_tree) : "a branchy_tree =

3. Binary Search Trees (19 points total)

This function concerns generic binary search trees ’a tree, as defined in the lectures,
Homework 3, Appendix B, and shown below.

(# Generic binary trees, from HW 3 %)
type "a tree =

| Empty

| Node of "a tree * 'a x ’"a tree

The 1eaf function constructs trees with no children.

let leaf (i:7a) : "a tree = Node (Empty, i, Empty)

(a) (8 points) The following value has type bool tree and satisfies the binary search tree
invariant. (Note: we can compare boolean values in OCaml, with false < true.)

Node (leaf false, true, Empty)

Below, list all other values of type bool tree that satisfy the binary search tree in-
variant. You may use the leaf function and constructors for the tree type in your
answer.

PennKey: 7

(b) (8 points) Consider the following mystery function that uses the binary search tree
invariant to calculate some result.

(* helper function x*)
let rec mystery_helper (t : int tree) (n : int) (k : int) : int =
begin match t with
| Empty —-> k
| Node (1lt, v, rt) ->
if n > v then mystery_helper rt n v
else mystery_helper 1t n k
end

(» mystery function %)
let mystery (t:int tree) (n:int) : int = mystery_helper t n (-999)

Complete the following test cases, demonstrating your understanding of this function.

let tree_1 = Node (Node (Empty, 2, Empty), 4, Node (Empty, 6, Empty))

let test () : bool = mystery tree_1 1 =
;5 run_test "mystery 1" test
let test () : bool = mystery tree_1 3 =
;7 run_test "mystery 3" test
let test () : bool = mystery tree_1 4 =
;; run_test "mystery 4" test
let test () : bool = mystery tree_1 7 =

;5 run_test "mystery 7" test
(c) (3 points) Suppose we add this function to the seT interface (Appendix C) with type:
val mystery : int set -> int -> int

Give a concise description of this implementation when given arguments s and x. Your
answer should be about sets and should not mention the tree type or its constructors.
You may assume that -999 is not an element of the set s.

"mystery s x" returns

4. Program design and List Recursion (25 points total)

Some data comes in the form of periodic waves. This data is easiest to understand visually.

wave
’ AN
, e

~

downslope

upslope

However, in OCaml we must work with the raw data that generates these charts. In this
problem, we represent this data as a list of waves, where each wave is a triple containing an
upslope, crest value, and downslope.

type wave = int list x int *» int list

For example, this list contains three waves and corresponds to the chart above.

let data = [([1;2;4]1,5,1[4;2;1]1); ([2;3;5],6,(5;3;2]); ([3;4;6]1,7,1[6;4;3])]1

When working with data, the first step is validation. For each wave, we want to ensure
that the list of values for the upslope is monotonically increasing and that the downslope is
monotonically decreasing. To do so, we will use a higher-order function called monotonic,
which is parameterized by a comparison function.

The following two functions determine whether their provided lists contain elements in
strictly increasing or strictly decreasing order, respectively.

let increasing : int list -> bool = monotonic (fun x y -> x < y)
let decreasing : int list -> bool

monotonic (fun x y -> x > vy)

(a) (3 points) Write the type of the monotonic function based on its usage above as you
might see it in an m11 file or module signature.

val monotonic

PennKey: 9

(b) (9 points) Next, we should write some tests. A monotonically increasing list is one
where each value in the list is strictly larger than the previous value, and the analogue
holds for a decreasing list. For example, we can test the decreasing function with the
following code:

let test (): bool = let x = [5; 4; 3; 2] in

decreasing x
;; run_test "decreasing list" test

Complete the following test cases for the increasing and decreasing functions de-
fined above. Don’t forget that increasing and decreasing are defined using the <
and > operators.

let test () : bool = let x = in
increasing x && not (decreasing x)
;; run_test "increasing, not decreasing" test

let test () : bool = let x = in
not (increasing x) && not (decreasing x)
;; run_test "list is neither" test

let test () : bool = let x = in
increasing x && decreasing x)

;5 run_test "list is both" test

10

(c) (13 points) Now complete the following definition of the monotonic function. Your
solution must be recursive and should not use t ransform, fold, or any other list library
function. Constructors, such as :: and [], and pattern matching expressions are fine.
(Type annotations have been omitted, but you don’t have to fill them in.)

let rec monotonic (cmp :) (1 :)

PennKey: 11

5. Higher Order Functions (16 points total)

Use the higher-order list processing functions transform and fold (see Appendix A) to
complete the following functions. For these problems do NOT use recursion or any other
list library functions. Constructors, such as : : and [1, are fine.

(a) (8 points) Implement a generic function, called a11, that determines whether all values
in a list satisfy a given predicate. The test below should pass.

let all (pred : 'a —-> bool) (1 : 'a list) : bool =

let test () : bool = all (fun x —> x < 6) [1; 2; 3; 5]
;; run_test "all" test

(b) (8 points) Recall the wave type with components for the upslope, crest, and downslope.

type wave = int list x int * int list

Write a function, called summarize that returns all of the wave crests found in a list of
waves, using transform and/or fold. The test below should pass.

let summarize (s : wave list) : int list =
let data = [([1;2;4]1,5,04;2;11); ([2;3;51,6,15;3;21); ([3;4;6]1,7,[6;4;3]1)]1
let test () : bool = summarize data = [5;6;7]

;; run_test "summarize" test

12

6. Abstract Data Types (12 points total)
Recall the wave type from Problem 4.
type wave = int list x int * int list
This type comes with a representation invariant. A wave is valid if its upslope is increasing,

its downslope is decreasing, and the crest is the largest value. We can test waves for validity
using the function valid_wave, shown in Appendix D.

Furthermore, a sequence is a list of waves.

type sequence = wave list

This type also has a representation invariant. A sequence is valid sequence if every wave
in the list is valid. We can test a sequence for validity using the function valid_sequence,
shown in Appendix D.

We would like to use an abstract data type to safely maintain these invariants when working
with wave data. In other words, we want to create a module signature that ensures that the
summarize function in this interface can only be called with a valid sequence. (For reference,
Appendix D contains the implementation of the module.)

This question asks you about various options for the interface of this abstract type.
We can characterize these possible designs as:
* Unusable: lacking functionality: no client code could usefully call functions of the
interface to achieve a non-trivial result

» Unsafe: usable, but that doesn’t ensure implementation invariants are preserved: the
client can provide inputs that break implementation invariants

* Good: usable and able to enforce invariants
For each of the following signatures, mark the box next to the characterization that best
describes it. Additionally, if it is not “Good”, briefly describe why you chose that choice.

For example, if a signature is “Unsafe” explain how a client could break the implementation
invariant.

(There is nothing to do on this page.)

PennKey: 13

(a) (3 points)

module type DATA

= sig

type wave = int list * int * int list

type sequence

wave list

val empty : sequence

val add_wave
val summarize
end

wave —> sequence —-> sequence
sequence -> int list

0 Unusable 0 Unsafe O Good

Explanation:

(b) (3 points)

module type DATA
type wave
type sequence
val make_wave

sig

= wave list
int list -> int -> int list

val empty : sequence

val add_wave
val summarize
end

wave —> sequence -> sequence
sequence -> int list

0 Unusable 0 Unsafe O Good

Explanation:

—> wave

14

(c) (3 points)

module type DATA sig
type wave
type sequence = wave list
val empty : sequence
val add_wave : wave —-> sequence —-> sequence
val summarize : sequence -> int list
end

O Unusable 0 Unsafe O Good

Explanation:

(d) (3 points)

PennKey:

module type DATA = sig
type wave
type sequence
val empty : sequence

val make_wave : int list -> int -> int list -> wave
val add_wave : wave —-> sequence —-> sequence
val summarize : sequence -> int list

end

0 Unusable 0 Unsafe O Good

Explanation:

15

A Higher-Order List Processing Functions

The higher-order list processing functions transform and fold:

let rec transform (f : 'a -> 'b) (p : "a list) : ’'b list =
begin match p with
| (entry::rest) -> f entry :: transform f rest
I [l => [
end

let rec fold
(combine: 'b -> 'a -> ’a)

(base:"a)

(1 : "b list) : "a =
begin match 1 with

| [] —> base

| h :: tl -> combine h (fold combine base tl)
end

B Generic Binary Search Trees

(# Generic binary trees, from HW 3 x)
type 'a tree =

| Empty

| Node of "a tree « 'a x ’"a tree

let leaf (i:’a) : ’"a tree = Node (Empty, i, Empty)

let rec lookup (t:’"a tree) (n:’a) : bool =
begin match t with
| Empty —-> false
| Node (lt, x, rt) —>
x =n || if n < x then lookup 1lt n else lookup rt n
end

(+ Inserts n into the binary search tree t =)
let rec insert (t:’'a tree) (n:’'a) : 'a tree =
begin match t with
| Empty —> Node (Empty, n, Empty)
| Node (1t, x, rt) ->
if x = n then t
else if n < x then Node (insert 1t n, x, rt)
else Node (lt, x, insert rt n)
end

C SET interface

module type SET = sig
type "a set

val empty : ’"a set

val add : 'a —> ’'a set -> ’'a set

val member : "a -> 'a set -> bool

val equals : "a set -> ’"a set -> bool

val set_of list : 'a list —-> ’"a set
end

D Wave Module

module Wave : DATA = struct
type wave = int list x int » int list

type sequence = wave list

let increasing : int list -> bool = monotonic (fun x y -> x < y)
let decreasing : int list -> bool = monotonic (fun x y -> x > vy)
let valid_wave (w : wave) : bool =
begin match w with
| (up, crest, down) -> increasing up && decreasing down
&& all (fun x -> crest > x) up && all (fun x -> crest > x) down
end
let valid_sequence (s: sequence) : bool =

all valid_wave s
let make_wave (up : int list) (crest : int) (down : int list) : wave
let w = (up, crest, down) in

if valid_wave w then w else failwith "ERROR: invalid wave"

let empty : sequence = []

let add_wave (w: wave) (s : sequence) : sequence = W :: S
let summarize (s : sequence) : int list = ... (* implementation not
end

*)

17

	Higher-Order List Processing Functions
	Generic Binary Search Trees
	SET interface
	Wave Module

