
CIS 1200 Midterm I February 17, 2025

SOLUTIONS

1

1. Types (24 points total)

For each OCaml value below, fill in the missing type annotations or else write “ill typed” if
there is no way to fill in the annotation that does not cause a type error.

Your answer should be the most generic type that OCaml would infer for the value–—i.e.,
if int list and bool list are both possible types of an expression, you should write
’a list.

Some of these expressions refer to the types and functions defined in Appendix A.

We’ve done the first one for you.
let example: int list =

[4; 5]

(a) let ans: bool * bool * int =
(true, false, 8)

(b) let ans: int list =
begin match [1; 2; 0] with
| [] -> [-1]
| hd :: tl -> tl
end

(c) let ans: bool list =
transform (fun x -> x mod 2 = 0) [1; 2; 5]

(d) let ans: ill-typed =
3 +. 2

(e) let ans: ill-typed =
if true then "ocaml" else 1200

(f) let ans : ’a list -> ’a list =
fun x -> begin match x with

| [] -> []
| (h :: tl) -> (h :: h :: tl)
end

(g) let ans: int * string * int =
(fun x y -> (x, "ocaml", y)) 1200 120

(h) let ans: (’a -> int list -> int list) -> ’a list -> int list =
fun x -> fold x [3; 5; 6]

2

2. Tree recursion (24 points total)

Consider a version of binary trees, called branchy_trees where data is stored only in leaf
nodes. Like evolutionary trees from Homework 2, branches do not include labels. Unlike
evolutionary trees, any subtree can be Empty.
type ’a branchy_tree =

| Empty
| Leaf of ’a
| Branch of ’a branchy_tree * ’a branchy_tree

For clarity, when we draw branchy trees, we use the symbol + to indicate a branch and the
symbol * to indicate an empty subtree. For example, this tree
let tree : int branchy_tree =

Branch (Leaf 1, Branch (Empty, Leaf 2))

would be drawn as:
+

/ \
1 +

/ \

* 2

(a) How would you represent the following tree in OCaml?

+
/ \

+ 3
/ \
1 2

(3 points) Check one.

⊠ let tree_1 : int branchy_tree =
Branch (Branch (Leaf 1, Leaf 2), Leaf 3)

□ let tree_1 : int branchy_tree =
Branch (Branch (Leaf 1, Leaf 2), Branch (Leaf 3, Empty))

□ let tree_1 : int branchy_tree =
Branch (Leaf 1, Branch (Leaf 2, Leaf 3))

PennKey: 3

(b) How would you represent the following tree in OCaml?

+
/ \
/ \
+ +
/ \ / \

* 1 + *
/ \
2 3

(3 points) Check one.

□ let tree_3 : int branchy_tree =
Branch (Leaf 1,

Branch (Branch (Leaf 2, Leaf 3), Empty))

□ let tree_3 : int branchy_tree =
Branch (Branch (Leaf 1, Empty),

Branch (Branch (Leaf 2, Empty), Leaf 3))

⊠ let tree_3 : int branchy_tree =
Branch (Branch (Empty, Leaf 1),

Branch (Branch (Leaf 2, Leaf 3), Empty))

4

(c) (4 points) Consider the function cons, shown below.
let rec cons (x : ’a)(t : ’a branchy_tree) : ’a branchy_tree =

begin match t with
| Empty -> Leaf x
| Leaf y -> Branch (Leaf x, Leaf y)
| Branch (l, r) -> Branch (cons x l, r)

end

Which of the following trees corresponds to this OCaml expression:
let tree_4 = cons 1 (cons 2 (cons 3 Empty))

Circle one option below (i)-(iv).

(i) + (ii) +
/ \ / \
+ 3 1 +
/ \ / \
1 2 2 +

/ \
3 *

(iii) + (iv) +
/ \ / \
1 + + *

/ \ / \
2 3 + 3

/ \
1 2

The correct tree is (i)

PennKey: 5

(d) (14 points) The prune function tidies up branching trees by removing as many occur-
rences of Empty as possible. In its result, no Branch should have an Empty subtree.
For example, both tree_2 and tree_3, should produce the tree on the right when
pruned.

tree_2 tree_3 pruned

+ + +
/ \ / \ / \
1 + / \ 1 +

/ \ + + /\
2 + / \ / \ 2 3

/ \ * 1 + *
* 3 / \

2 3

The prune function is implemented through tree recursion.
let rec prune (t : ’a branchy_tree) : ’a branchy_tree =

begin match t with
| Empty -> Empty
| Leaf x -> Leaf x
| Branch (t1, t2) -> helper (prune t1) (prune t2)

end

Note that prune delegates to a helper function in the Branch case. Complete an appro-
priate definition for helper below.
(* helper function for prune *)
let helper (t1 : ’a branchy_tree) (t2 : ’a branchy_tree) : ’a branchy_tree =

begin match (t1, t2) with
| (Empty, _) -> t2
| (t1, Empty) -> t1
| (_,_) -> Branch (t1, t2)

end

6

3. Binary Search Trees (19 points total)

This function concerns generic binary search trees ’a tree, as defined in the lectures,
Homework 3, Appendix B, and shown below.
(* Generic binary trees, from HW 3 *)
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

The leaf function constructs trees with no children.
let leaf (i:’a) : ’a tree = Node(Empty, i, Empty)

(a) (8 points) The following value has type bool tree and satisfies the binary search tree
invariant. (Note: we can compare boolean values in OCaml, with false < true.)

Node (leaf false, true, Empty)

Below, list all other values of type bool tree that satisfy the binary search tree in-
variant. You may use the leaf function and constructors for the tree type in your
answer.
Empty

leaf false

leaf true

Node (Empty, false, leaf true)

PennKey: 7

(b) (8 points) Consider the following mystery function that uses the binary search tree
invariant to calculate some result.
(* helper function *)
let rec mystery_helper (t : int tree) (n : int) (k : int) : int =
begin match t with
| Empty -> k
| Node (lt, v, rt) ->

if n > v then mystery_helper rt n v
else mystery_helper lt n k

end

(* mystery function *)
let mystery (t:int tree) (n:int) : int = mystery_helper t n (-999)

Complete the following test cases, demonstrating your understanding of this function.
let tree_1 = Node (Node (Empty, 2, Empty), 4, Node (Empty, 6, Empty))

let test () : bool = mystery tree_1 1 = -999
;; run_test "mystery 1" test

let test () : bool = mystery tree_1 3 = 2
;; run_test "mystery 3" test

let test () : bool = mystery tree_1 4 = 2
;; run_test "mystery 4" test

let test () : bool = mystery tree_1 7 = 6
;; run_test "mystery 7" test

(c) (3 points) Suppose we add this function to the SET interface (Appendix C) with type:
val mystery : int set -> int -> int

Give a concise description of this implementation when given arguments s and x. Your
answer should be about sets and should not mention the tree type or its constructors.
You may assume that -999 is not an element of the set s.
Answer: mystery s x returns the largest number in the set s that is strictly smaller
than x, or -999 if there is no such number.

8

4. Program design and List Recursion (25 points total)

Some data comes in the form of periodic waves. This data is easiest to understand visually.

However, in OCaml we must work with the raw data that generates these charts. In this
problem, we represent this data as a list of waves, where each wave is a triple containing an
upslope, crest value, and downslope.

type wave = int list * int * int list

For example, this list contains three waves and corresponds to the chart above.
let data = [([1;2;4],5,[4;2;1]); ([2;3;5],6,[5;3;2]); ([3;4;6],7,[6;4;3])]

When working with data, the first step is validation. For each wave, we want to ensure
that the list of values for the upslope is monotonically increasing and that the downslope is
monotonically decreasing. To do so, we will use a higher-order function called monotonic,
which is parameterized by a comparison function.

The following two functions determine whether their provided lists contain elements in
strictly increasing or strictly decreasing order, respectively.

let increasing : int list -> bool = monotonic (fun x y -> x < y)
let decreasing : int list -> bool = monotonic (fun x y -> x > y)

(a) (3 points) Write the type of the monotonic function based on its usage above as you
might see it in an mli file or module signature.
val monotonic : (’a -> ’a -> bool) -> ’a list -> bool

or
val monotonic : (int -> int -> bool) -> int list -> bool

or (technically correct)
val monotonic : (’a -> ’a -> bool) -> int list -> bool

PennKey: 9

(b) (9 points) Next, we should write some tests. A monotonically increasing list is one
where each value in the list is strictly larger than the previous value, and the analogue
holds for a decreasing list. For example, we can test the decreasing function with the
following code:

let test (): bool = let x = [5; 4; 3; 2] in
decreasing x

;; run_test "decreasing list" test

Complete the following test cases for the increasing and decreasing functions de-
fined above. Don’t forget that increasing and decreasing are defined using the <

and > operators.
;; run_test "increasing" (fun () ->

let x = [1; 2; 3; 5] in
increasing x && not (decreasing x))

;; run_test "both" (fun () ->
let x = [] in
increasing x && decreasing x)

;; run_test "neither" (fun () ->
let x = [3;4;3] in
not (increasing x) && not (decreasing x))

10

(c) (13 points) Now complete the following definition of the monotonic function. Your
solution must be recursive and should not use transform, fold, or any other list library
function. Constructors, such as :: and [], and pattern matching expressions are fine.
(Type annotations have been omitted, but you don’t have to fill them in.)

(* is the list monotonic with respect to the given comparison function? *)
let rec monotonic cmp (l : int list) : bool =

begin match l with
| [] -> true
| [x] -> true
| x :: y :: tl -> cmp x y && monotonic cmp (y :: tl)

end

PennKey: 11

5. Higher Order Functions (16 points total)

Use the higher-order list processing functions transform and fold (see Appendix A) to
complete the following functions. For these problems do NOT use recursion or any other
list library functions. Constructors, such as :: and [], are fine.

(a) (8 points) Implement a generic function, called all, that determines whether all values
in a list satisfy a given predicate. The test below should pass.

let all (pred : ’a -> bool) (l : ’a list) : bool =
fold (fun x acc -> pred x && acc) true l

let test () : bool = all (fun x -> x < 6) [1; 2; 3; 5]
;; run_test "all" test

(b) (8 points) Recall the wave type with components for the upslope, crest, and downslope.
type wave = int list * int * int list

Write a function, called summarize that returns all of the wave crests found in a list of
waves, using transform and/or fold. The test below should pass.

let crest (w:wave) : int =
begin match w with
| (_,c,_) -> c
end

let summarize (s:wave list) : int list =
transform crest s

let data = [([1;2;4],5,[4;2;1]); ([2;3;5],6,[5;3;2]); ([3;4;6],7,[6;4;3])]

let test () : bool = summarize data = [5;6;7]
;; run_test "summarize" test

12

6. Abstract Data Types (12 points total)

Recall the wave type from Problem 4.
type wave = int list * int * int list

This type comes with a representation invariant. A wave is valid if its upslope is increasing,
its downslope is decreasing, and the crest is the largest value. We can test waves for validity
using the function valid_wave, shown in Appendix D.

Furthermore, a sequence is a list of waves.
type sequence = wave list

This type also has a representation invariant. A sequence is valid sequence if every wave
in the list is valid. We can test a sequence for validity using the function valid_sequence,
shown in Appendix D.

We would like to use an abstract data type to safely maintain these invariants when working
with wave data. In other words, we want to create a module signature that ensures that the
summarize function in this interface can only be called with a valid sequence. (For reference,
Appendix D contains the implementation of the module.)

This question asks you about various options for the interface of this abstract type.

We can characterize these possible designs as:

• Unusable: lacking functionality: no client code could usefully call functions of the
interface to achieve a non-trivial result

• Unsafe: usable, but that doesn’t ensure implementation invariants are preserved: the
client can provide inputs that break implementation invariants

• Good: usable and able to enforce invariants

For each of the following signatures, mark the box next to the characterization that best
describes it. Additionally, if it is not “Good”, briefly describe why you chose that choice.
For example, if a signature is “Unsafe” explain how a client could break the implementation
invariant.

(There is nothing to do on this page.)

PennKey: 13

(a) (3 points)

module type DATA = sig
type wave = int list * int * int list
type sequence = wave list
val empty : sequence
val add_wave : wave -> sequence -> sequence
val summarize : sequence -> int list

end

□ Unusable ⊠ Unsafe □ Good

Explanation: Not safe: because the wave type is NOT abstract, a triple could be passed
to add_wave that is not a valid wave. This would produce a sequence that could be
passed to summarize.

(b) (3 points)

module type DATA = sig
type wave
type sequence = wave list
val make_wave : int list -> int -> int list -> wave
val empty : sequence
val add_wave : wave -> sequence -> sequence
val summarize : sequence -> int list

end

□ Unusable □ Unsafe ⊠ Good

Explanation: This one is good, so no explanation is required.

14

(c) (3 points)

module type DATA = sig
type wave
type sequence = wave list
val empty : sequence
val add_wave : wave -> sequence -> sequence
val summarize : sequence -> int list

end

⊠ Unusable □ Unsafe □ Good

Explanation: Unusable: the wave type is abstract and there is no way to create a wave.
So the add_wave function cannot be called.

(d) (3 points)

module type DATA = sig
type wave
type sequence
val empty : sequence
val make_wave : int list -> int -> int list -> wave
val add_wave : wave -> sequence -> sequence
val summarize : sequence -> int list

end

□ Unusable □ Unsafe ⊠ Good

Explanation: This one is good, so no explanation is required.

PennKey: 15

A Higher-Order List Processing Functions
The higher-order list processing functions transform and fold:
let rec transform (f : ’a -> ’b) (p : ’a list) : ’b list =

begin match p with
| (entry::rest) -> f entry :: transform f rest
| [] -> []

end

let rec fold
(combine: ’b -> ’a -> ’a)
(base:’a)
(l : ’b list) : ’a =

begin match l with
| [] -> base
| h :: tl -> combine h (fold combine base tl)

end

B Generic Binary Search Trees

(* Generic binary trees, from HW 3 *)
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

let leaf (i:’a) : ’a tree = Node(Empty, i, Empty)

let rec lookup (t:’a tree) (n:’a) : bool =
begin match t with

| Empty -> false
| Node(lt, x, rt) ->

x = n || if n < x then lookup lt n else lookup rt n
end

(* Inserts n into the binary search tree t *)
let rec insert (t:’a tree) (n:’a) : ’a tree =

begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

16

C SET interface

module type SET = sig
type ’a set

val empty : ’a set
val add : ’a -> ’a set -> ’a set
val member : ’a -> ’a set -> bool
val equals : ’a set -> ’a set -> bool
val set_of_list : ’a list -> ’a set

end

D Wave Module

module Wave : DATA = struct

type wave = int list * int * int list

type sequence = wave list

let increasing : int list -> bool = monotonic (fun x y -> x < y)
let decreasing : int list -> bool = monotonic (fun x y -> x > y)

let valid_wave (w : wave) : bool =
begin match w with
| (up, crest, down) -> increasing up && decreasing down

&& all (fun x -> crest > x) up && all (fun x -> crest > x) down
end

let valid_sequence (s: sequence) : bool =
all valid_wave s

let make_wave (up : int list) (crest : int) (down : int list) : wave =
let w = (up, crest, down) in
if valid_wave w then w else failwith "ERROR: invalid wave"

let empty : sequence = []

let add_wave (w: wave) (s : sequence) : sequence = w :: s

let summarize (s : sequence) : int list = ... (* implementation not shown *)

end

17

	Higher-Order List Processing Functions
	Generic Binary Search Trees
	SET interface
	Wave Module

