
CIS 1200 Midterm 2 March 24, 2023
Steve Zdancewic, instructor

SOLUTIONS

1

1. Deques and the OCaml ASM (21 points)

Recall the definitions of deque and dqnode from homework 4:
type ’a dqnode = {

v: ’a;
mutable next: ’a dqnode option;
mutable prev: ’a dqnode option;

}

type ’a deque = {
mutable head: ’a dqnode option;
mutable tail: ’a dqnode option;

}

In Appendix A you will find the invariant for deques, with each clause annotated with a letter
between (a) and (f). You will also find the code for a correct implementation of the to_list

operation. For each of the following stack and heap diagrams, indicate whether the value d of
type int deque satisfies the deque invariant or mark all of the properties that are broken. Then
choose one option for the result of running to_list d.

a.

⊠ Satisfies invariant or □ Clause (a) fails (“tail reachable from head via next”)
□ Clause (b) fails (“nothing next after tail”)
□ Clause (c) fails (“head reachable from tail via prev”)
□ Clause (d) fails (“nothing previous before head”)
□ Clause (e) fails (“next then prev”)
□ Clause (f) fails (“prev then next”)

What will be the result from running let ans = to_list d?

□ ans = [] □ the program will go into an infinite loop
□ ans = [2]

□ ans = [1;2]

⊠ ans = [2;1]

2

b.

□ Satisfies invariant or □ Clause (a) fails (“tail reachable from head via next”)
□ Clause (b) fails (“nothing next after tail”)
□ Clause (c) fails (“head reachable from tail via prev”)
⊠ Clause (d) fails (“nothing previous before head”)
□ Clause (e) fails (“next then prev”)
⊠ Clause (f) fails (“prev then next”)

What will be the result from running let ans = to_list d?

□ ans = [] ⊠ the program will go into an infinite loop
□ ans = [2]

□ ans = [1;2]

□ ans = [2;1]

c.

□ Satisfies invariant or □ Clause (a) fails (“tail reachable from head via next”)
□ Clause (b) fails (“nothing next after tail”)
⊠ Clause (c) fails (“head reachable from tail via prev”)
□ Clause (d) fails (“nothing previous before head”)
⊠ Clause (e) fails (“next then prev”)
□ Clause (f) fails (“prev then next”)

What will be the result from running let ans = to_list d?

□ ans = [] □ the program will go into an infinite loop
⊠ ans = [2]

□ ans = [1;2]

□ ans = [2;1]

PennKey: 3

2. Programming with Deques (24 points)

Suppose we want to define a function move_tail_to_head that, given a deque d, rearranges
the references to move the tail node (if any) to be the head, but otherwise leaves the elements
in the same order. If d is empty, or if it has only one element, then it is unchanged. Assuming
that d satisfies the deque invariant before move_tail_to_head is called, it should again satisfy
it afterward.

For instance, if we have a deque d with four elements such that to_list d = [1;2;3;4], then
after running move_tail_to_head d, we would have to_list d = [4;1;2;3].

Complete the code below for move_tail_to_head. Note that because you are simply updating
the nodes in place, there is no need to allocate any new ’a dqnode values.

let move_tail_to_head (d : ’a deque) : unit =
begin match d.tail with

| None -> () (* no elements, so the deque remains the same *)
| Some n ->

begin match n.prev with
| None -> () (* only one element, so the deque remains the same *)
| Some p ->

p.next <- None;
d.tail <- Some p;
n.prev <- None;
n.next <- d.head;
d.head <- Some n;
(* patch up the new second element *)
begin match n.next with
| None -> failwith "impossible: there were two nodes"
| Some h -> h.prev <- Some n
end

end
end

4

3. OCaml Concepts (12 points)

(a) Consider the following (nonsensical) OCaml function foo that processes an int list:
let foo (l:int list) : int =

let rec loop (m:int list) (acc:int) : int =
begin match m with
| [] -> acc
| x::xs ->

if x > acc then
loop xs (acc + x) (* A *)

else
5 + (loop xs acc) (* B *)

end
in
loop l (* C *) (loop l 0) (* D *)

Recall that a function call is in tail position if it will be evaluated in an otherwise empty
workspace in the abstract stack machine. There are four calls to the inner loop function
labeled A-D. Indicate which of them are in tail call position (mark all that apply):
⊠ call A is in tail position □ call B is in tail position
⊠ call C is in tail position □ call D is in tail position

(b) Consider the following OCaml program that constructs an object o:obj that supports two
methods, method1 and method2:

type obj = {method1 : int -> int ; method2 : unit -> int}

let mk_object (x:int) (y:int) : obj =
let field = {contents = x + y} in
{

method1 = (fun (a:int) -> a + field.contents) ;
method2 = (fun () -> field.contents + x)

}

let o : obj = mk_object 1200 42

i. Which of the following identifiers’ values must (necessarily) be stored as part of the
closure constructed in the heap for o.method1? (Mark all that apply.)
□ x □ y ⊠ field □ a

ii. Which of the following identifiers’ values must (necessarily) be stored as part of the
closure constructed in the heap for o.method2? (Mark all that apply.)
⊠ x □ y ⊠ field □ a

PennKey: 5

4. GUI Programming (23 points)

This problem refers to the widget module of the GUI library from HW05. Parts of its interface
are shown in Appendix B.

An Easter egg is a message hidden in a game or other application—it remains secret until the
user performs some action that reveals the secret message. In terms of our GUI design, an
Easter egg is just a kind of label widget with the string set to "" until the user triggers the
hidden message it by clicking on some other widget. We also let the user hide the Easter egg
again by clicking on the revealed secret message. The Easter egg and the widget that triggers it
might be placed in different locations in the user interface.

The type for the new easter_egg constructor is shown in Appendix B: easter_egg w msg

wraps the provided widget w to make it into a “trigger” such that clicking it reveals the message
in addition to whatever w usually does; it also returns the Easter egg itself.

For example, the following program demonstrates the use of an Easter egg by hiding the secret
message "CIS1200 Rules!" between the labels "Hello " and " World" (which is wrapped as
the trigger).

1 ;; open Widget
2
3 let hello_label, _ = label "Hello "
4 let world_label, _ = label " World"
5 let trigger, egg = easter_egg world_label "CIS 1200 Rules!"
6 let group = border (hpair hello_label (hpair egg trigger))
7 ;; Eventloop.run group

The resulting GUI displayed before and after the user clicks on “World” is shown below:

before: after:

(a) Suppose we want to change the code so that the hidden message appears to the right of
" World" in the GUI. Which of the following changes to the code will do that? Assume that
each change is applied separately from the others. (Mark all that apply)

□ swap the order of lines 3 and 4
⊠ change line 5 to be: let egg, trigger = easter_egg world_label "CIS 1200 Rules!"

⊠ change line 6 to be: let group = border (hpair hello_label (hpair trigger egg))

□ change line 6 to be: let group = border (hpair egg (hpair hello_label trigger))

6

(b) Suppose we change the group defined in line 6 as shown below:

let group = border (hpair egg (hpair trigger (hpair trigger egg)))

One of the images below shows the “before” state (i.e. before the egg is revealed), another
image shows the “after” state after the user has clicked on the left “World” label, and some of
the images are not produced at all by this code. Check the boxes to indicate which picture is
which.

⊠ before □ after □ not produced

□ before □ after ⊠ not produced

□ before □ after ⊠ not produced

□ before ⊠ after □ not produced

(c) It is possible to implement the Easter egg widgets entirely in terms of the existing widget
components whose interfaces appear in Appendix B. This means that the code does not need to
explicitly make use of any of the “low-level” operations that are provided by the Gctx module.
Fill in the blanks below that composes the Easter egg implementation from the existing label

and notifier widgets. We have used suggestive names to guide you. You will have to make
appropriate use of the label_controller lc but do not have to introduce any additional state.
Note that the Easter egg should start out as hidden (i.e., with a label set to the empty string "").

let easter_egg (w:widget) (msg:string) : widget * widget =
let egg_label, lc = label "" in
let egg =

{ repaint = egg_label.repaint ;
handle = mouseclick_listener (fun () -> lc.set_label "");
size = egg_label.size

}
in
let trigger, nc = notifier w in
nc.add_event_listener (mouseclick_listener (fun () -> lc.set_label msg));
(trigger, egg)

PennKey: 7

5. Java Concepts (16 points)

(a) What is the result of running the following code? (Choose one)
String s1 = "CIS 1200";
String s2 = "CIS ";
boolean ans = (s1 == s2 + "1200");

□ ans contains true ⊠ ans contains false □ this code raises and exception

s1 and s2 will refer to different heap locations, so the reference equality check will return
false

(b) What is the result of running the following code? (Choose one)
int[] a = {0,1,2,3};
boolean ans = (a[4] == 3);

□ ans contains true □ ans contains false ⊠ this code raises and exception

The array index is out of bounds.

(c) What is the result of running the following code? (Choose one)
String s;
boolean ans = (s.equals("CIS 1200"));

□ ans contains true □ ans contains false ⊠ this code raises and exception

This is a null pointer exception.

(d) What is the result of running the following code? (Choose one)
String[] strs1 = {"a", "b", "c"};
String[] strs2 = {strs1[0], strs1[1]};
boolean ans = (strs1[0] == strs2[0])

⊠ ans contains true □ ans contains false □ this code raises and exception

The corresponding entries of the two arrays will have references to the same heap loca-
tions.

8

6. Java Array Programming (24 points)

Write a function hPair, that takes in two rectangular arrays of type int[][] (i.e., every inner
array has the same length) and returns a new array that places the arrays horizontally adjacent
to each other. Any “open” space left by the difference in array sizes should be filled with 0’s.
Pictorially, if a and b are as shown below, then the results of using hPair in the two orders are
as shown.

a b hPair(a,b) hPair(b,a)
1 1 1 3 3 1 1 1 3 3 3 3 1 1 1
2 2 2 4 4 2 2 2 4 4 4 4 2 2 2

5 5 0 0 0 5 5 5 5 0 0 0

You may assume that the input arrays a and b are not null, that they are rectangular, and that
they contains no null sub-arrays. Note that a[i] refers to the row i in a. If a has no rows,
then hPair should return a copy of b (and vice versa). You may find it useful to use the static
methods Math.max and Math.min, or the array clone method which are given in Appendix C.

public static int[][] hPair(int[][] a, int[][] b) {
if (a.length == 0) {

return b.clone();
}
if (b.length == 0) {

return a.clone();
}
int h = Math.max(a.length, b.length);
int w = a[0].length + b[0].length;
int[][] tgt = new int[h][w];
for(int i=0; i<a.length; i++) {

for(int j=0; j<a[0].length; j++) {
tgt[i][j] = a[i][j];

}
}
for(int i=0; i<b.length; i++) {

for(int j=0; j<b[0].length; j++) {
tgt[i][j+a[0].length] = b[i][j];

}
}

return tgt;
}

PennKey: 9

Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
in the normal answer space for the problem in question.

10

A Deques

A.1 Deque Invariant
Either (1) the deque is empty and the head and tail are both None, or (2) the deque is non-empty
and

• head = Some n1 and tail = Some n2, where

(a) n2 is reachable from n1 by following next pointers
(“tail reachable from head via next”)

(b) n2.next = None (“nothing next after tail”)

(c) n1 is reachable from n2 by following prev pointers
(“head reachable from tail via prev”)

(d) n1.prev = None (“nothing previous before head”); and

• for every node n in the deque,

(e) if n.next = Some m then m.prev = Some n (“next then prev”)

(f) if n.prev = Some m then m.next = Some n (“prev then next”).

A.2 Deque functions
Code for the ’a deque version of to_list:

let to_list (d : ’a deque) : ’a list =
let rec loop (curr: ’a dqnode option) (l:’a list) : ’a list =

begin match curr with
| None -> l
| Some n -> loop n.prev (n.v::l)

end
in
loop d.tail []

PennKey: 11

B GUI library: Widget.mli excerpt

type widget = {
repaint : Gctx.gctx -> unit;
handle : Gctx.gctx -> Gctx.event -> unit;
size : unit -> Gctx.dimension;

}

val hpair : widget -> widget -> widget
val vpair : widget -> widget -> widget

(** A record of functions that allows us to read and write the string
associated with a label. *)

type label_controller = {
get_label : unit -> string;
set_label : string -> unit;

}

(** Construct a label widget and its controller. *)
val label : string -> widget * label_controller

(** An event listener processes events as they "flow" through
the widget hierarchy. *)

type event_listener = Gctx.gctx -> Gctx.event -> unit

(** Performs an action upon receiving a mouse click. *)
val mouseclick_listener : (unit -> unit) -> event_listener

(** A notifier_controller is associated with a notifier widget.
It allows the program to add event listeners to the notifier.

*)
type notifier_controller = { add_event_listener : event_listener -> unit; }

(** Construct a notifier widget and its controller *)
val notifier : widget -> widget * notifier_controller

(** NEW! *)
val easter_egg : widget -> string -> widget * widget

C Javadocs excerpt
static int Math.max(int a, int b)

Returns the greater of two int values.
static int Math.min(int a, int b)

Returns the smaller of two int values.

int[] a.clone()

Returns a new copy of the array a (assuming a is of type int[]).

12

	Deques
	Deque Invariant
	Deque functions

	GUI library: [backgroundcolor=white]Widget.mli excerpt
	Javadocs excerpt

