
CIS 1200 Midterm II March 28, 2025

SOLUTIONS

1

1. Programming with Linked Queues (44 points total)

Recall the type definitions of the queue data structure:
type ’a qnode = { v: ’a;

mutable next: ’a qnode option }

type ’a queue = { mutable head: ’a qnode option;
mutable tail: ’a qnode option }

We define an almost-queue to be a queue that contains a cycle. Here is an example:

The goal for this problem is to define a function, called remove_cycle, that can convert an
almost-queue to be a valid queue by truncating the queue at the problematic spot. (When
given a valid queue, remove_cycle should not modify its argument.)
val remove_cycle : ’a queue -> unit

After a call to remove_cycle, the first node in the queue that refers to itself or to any earlier
node should be the last node in the queue. For example, calling remove_cycle with the
queue above could result in the following ASM configuration.

2

1.1 (4 points) Recall the representation invariant for linked queues:

(1) head and tail are both tagged None or both tagged Some, and
(2) if head = Some h and tail = Some t, then

(2a) t is reachable from h by following next pointers
(2b) t.next = None

What part of this invariant does the almost-queue q1 (shown below) break, if any?
(Select “Valid” if no invariants are broken.)

□ (1) □ (2a) ⊠ (2b) □ This queue is valid.

1.2 (10 points) Define the function make_q1 that, when called, returns a queue that looks
like q1. In other words, placing let q1 = make_q1 () on the workspace should pro-
duce the stack and heap diagram shown above.

let make_q1 () : int queue =
let q1n = { v = 1 ; next = None } in
q1n.next <- Some q1n ;
{ head = Some q1n ; tail = Some q1n }

PennKey: 3

Consider the function contains_qn, shown below. When given a ’a qnode and ’a qnode list,
this function returns true if the ’a qnode is present within the list and false other-
wise.
let rec contains_qn (e : ’a qnode) (l : ’a qnode list) : bool =
begin match l with
| [] -> false
| hd :: tl -> if e == hd then true else contains_qn e tl
end

1.3 (4 points) Complete the following test case for contains_qn:
let test () : bool =
let qn1 = { v = 1 ; next = None } in
let qn2 = qn1 in
let qn3 = { v = 3 ; next = Some qn1 } in

contains_qn qn1 [qn2 ; qn3] = true

1.4 (5 points) Is contains_qn tail recursive?

□ Tail Recursive □ Not Tail Recursive

1.5 (5 points) Now consider a mystery function that works with queues. Don’t try to
understand what this function does. Is this function tail recursive?
let mystery (q : bool queue) : bool =

let rec loop (qno : bool qnode option) : bool =
begin match qno with
| None -> true
| Some qn -> loop qn.next && qn.v
end in

loop q.head

□ Tail Recursive ⊠ Not Tail Recursive

4

1.6 (16 points) Now complete the implementation of remove_cycle. We have given you
a start by defining the loop that traverses each node in the queue. This loop maintains
a list of qnodes that have been previously encountered. If you encounter a qnode that
is already contained in the list, then you have found a cycle!
In your solution, you may use contains_qn but no other library functions.
(* Given an almost-queue with a cycle, correct the queue by truncating
it when the first repeated element appears. *)
let remove_cycle (q: ’a queue) : unit =
let rec loop (qno: ’a qnode option) (l: ’a qnode list) =

begin match qno with
| None -> ()
| Some qn ->

(* look at following node *)
begin match qn.next with
| None -> ()
| Some next_qn ->

if contains_qn next_qn l then
(* found a cycle, truncate queue *)
(qn.next <- None; q.tail <- Some qn)

else
(* loop to next node, remembering this one *)
loop qn.next (qn :: l)

end
end in

loop q.head []

PennKey: 5

2. GUI library and Reactive Programming (32 points total)

Suppose we would like to add a simple clock (a circle with an “hour hand” indicating the
current time) to the widget library from homework 5. For example, Figure 1 shows clocks
set at two different times: noon and five o’clock.

Figure 1: Clock widget at 12 o’clock (left) and 5 o’clock (right)

To do so, we will add a “clock constructor,” with the following type to widget.mli:
val clock : int -> widget * notifier_controller * int value_controller

When given an initial time (a number between 1 and 12, inclusive) this function creates a
clock widget plus a way to add event listeners to the clock widget (using a notifier controller)
and a way to add change listeners for the clock’s time (using a value controller).

First, let’s make sure that you understand the widget library. The following problem refers
to the implementation of the notifier widget, reprinted in Appendix C.

2.1 (4 points) What is the type of the anonymous function defined on lines 12–14:

event listener or Gctx.gctx -> Gctx.event -> unit

2.2 (4 points) When allocated in the heap, the closure for the anonymous function defined
on lines 12–14, must include copies of the stack bindings for which of the following:

⊠ w ⊠ listeners □ contents □ List.iter □ g □ e

6

2.3 (14 points) Implement clock. For reference, the interface for the Gctx library ap-
pears in Appendix A and you may assume that ;; open Gctx appears at the top of the
module.
You should draw the clock as a 150 × 150 pixel ellipse centered in a 400 × 400 pixel
canvas as the “clock face”, plus a line from the center to the edge as the “clock hand”. In
your code, you may use find_endpoint, declared below. (You not need to implement
this function.)
(* Calculate the correct position of the end of the "clock hand" at

a given time. This position is a point on the circumference
of a radius 150 circle centered at location (200,200). *)

let find_endpoint (time: int) : Gctx.position = ...

(** Create a clock widget *)
let clock (init : int) :

widget * notifier_controller * int value_controller =

(* value controller for the time *)
let time = make_controller (init mod 12) in

(* draw the clock face and clock hand *)
let repaint (g : Gctx.gctx) : unit =

let c : Gctx.position = (200,200) in (* center *)
let r : int = 150 in (* radius *)

Gctx.draw ellipse g c r r ;
Gctx.draw line g c (find endpoint (time.get value ()))

in

(* create the clock widget and its notifier controller *)
let clock_w, nc =

canvas (400, 400) repaint in

(* return the appropriate values *)

(clock w, nc, time)

PennKey: 7

Now, consider how a client might use the clock in an application. For reference, an
excerpt of the Widget library interface appears in Appendix B. You may assume that
;; open Widget appears at the top of the module.

2.4 (10 points) Say we would like to simulate an alarm clock. For example, let’s create a
label and put it next to the clock widget:
let clock_w, nc, vc = clock 12
let label_w, lc = label "Zzzzz"
let top = hpair clock_w (hpair (space (10,10)) label_w)

Use the clock’s value controller below to make it so that when the time reaches 5, the
label’s string changes from "Zzzzz" to "Wake up". (You do not need to change the
string at any other time.)

vc.add_change_listener (fun x ->
if x = 5 then lc.set_text "Wake up")

8

3. Java arrays and strings (20 points total)

The following questions refer to Java’s String class. An excerpt of the documentation for
this class is shown in Appendix D.

3.1 (4 points) What happens when the following code is executed in Java? (Select one.)
String[] s = {};
int result = s.length;

⊠ The s.length expression returns 0.
□ The expression s.length is skipped.
□ A NullPointerException is thrown.
□ The program does not compile.
□ None of the above.

3.2 (4 points) What happens when the following code is executed in Java? (Select one.)
String s1 = "Java";
String s2 = new String("Java");
System.out.println(s1.equals(s2));

⊠ The program prints true.
□ The program prints false.
□ The program prints null.
□ The program does not compile.
□ None of the above.

3.3 (4 points) What happens when the following code is executed in Java? (Select one.)
String s1 = "Java";
char[] a1 = s1.toCharArray();
char[] a2 = { ’J’, ’a’, ’v’, ’a’ };
System.out.println(a1 == a2);

□ The program prints true.
⊠ The program prints false.
□ The program prints null.
□ The program does not compile.
□ None of the above.

PennKey: 9

3.4 (4 points) What happens when the following code is executed in Java? (Select one.)
String[] arr = { "Java", "OCaml"};
String last = arr[arr.length];
System.out.println(last);

□ The program prints "OCaml".
□ The program prints 2.
□ The program prints null.
⊠ An ArrayIndexOutOfBoundsException is thrown.
□ None of the above.

3.5 (4 points) Which of the following is a valid way of creating a Java array with values
"1", "2", and "3"? (Select all that apply, or “None of the above”.)

⊠ String[] arr = {"1", "2", "3"};

□ String arr = new String(new char[]{’1’, ’2’, ’3’});

□ String[] arr = new int[]{1, 2, 3};

⊠ String[] arr = { new String("1"), new String("2"), new String("3")};

□ None of the above.

10

4. Programming with Java Arrays (24 points total)

Recall that in Java, two dimensional arrays are represented as arrays of arrays. This means
that in a 2D array of type int[][] there is no guarantee that the inner arrays are all the same
length, or even nonnull.

For this problem, you will write a static function, called extractRectangle that copies a
rectangular section starting from the upper-left corner of some input array.
/* Copy a rectangular array of size h * w from the input, starting at

the upper left corner. Returns null if any part of the input is null,
h or w is negative, or if the input array does not contain enough
values. */

public static int[][] extractRectangle(int h, int w, int[][] input);

For example, the following test case demonstrates what happens when a rectangle can be
extracted.

@Test
public void testExtractRectangle_validInput() {

int[][] input = {
{1, 2, 3},
{4},
{7, 8, 9, 10}

};
int[][] expected = {

{1}, // truncate first row
{4} // copy entire second row

// omit third row
};
assertArrayEquals(expected, Exam.extractRectangle(2, 1, input));

}

And this test case demonstrates that the copy needs to start at the upper left corner. The
method returns null because there are not enough values in the first row of the array.

@Test
public void testExtractRectangle_tooSmall() {

int[][] input = {
{1, 2}, // need to have 3 values, but only 2 present
{4, 5, 6},
{7, 8, 9}

};
assertNull(Exam.extractRectangle(2, 3, input));

}

PennKey: 11

4.1 (4 points) Fill in the expected result when a zero-by-zero rectangle is requested. (This
should be a 2D array of size 0× 0.)
@Test
public void testRectangle0() {

int[][] input = {
{1, 2},
{4, 5, 6},
{7, 8, 9, 10}

};
int[][] expected =

{}

assertArrayEquals(expected, Main.extractRectangle(0, 0, input));
}

4.2 (4 points) Complete a test case that demonstrates when the function should return null

when requesting a zero-by-zero rectangle.
@Test
public void testRectangle1() {

int[][] input =

null
;

assertNull(Main.extractRectangle(0,0,input));
}

12

4.3 (16 points) Now implement the method. Your method should never throw an
ArrayIndexOutOfBounds exception or a NullPointerException. If either of these
would happen, the method should return null instead.

public static int[][] extractRectangle(int h, int w, int[][] input) {
if (input == null || w < 0 || h < 0 || h > input.length) {

return null;
}
int[][] output = new int[h][w];
for (int i = 0; i < h; i++) {

// make sure the row is not null and has enough values
if (input[i] == null || w > input[i].length) {

return null;
}
// copy the prefix of the row
for (int j = 0; j < w; j++) {

output[i][j] = input[i][j];
}

}
// make sure none of the remaining rows are null
for (int i = h; i < input.length; i++) {

if (input[i] == null) {
return null;

}
}
return output;

}

PennKey: 13

Scratch Space

Use this page for work that you do not want us to grade. If you run out of space elsewhere
in the exam and you do want to put something here that we should grade, make sure to put a
clear note in the normal answer space for the problem in question.

14

A Appendix: GUI Gctx interface (excerpt)

(** A widget-relative position *)
type position = int * int

(** A width and height paired together. *)
type dimension = int * int

(** Display text at the given position *)
val draw_string : gctx -> position -> string -> unit

(** Draw a line between the two specified positions *)
val draw_line : gctx -> position -> position -> unit

(** Draw an ellipse, centered at position with given x and y radii. *)
val draw_ellipse : gctx -> position -> int -> int -> unit

B Appendix: GUI Widget Interface (excerpt)

(* Widget *)

type widget = {
repaint : Gctx.gctx -> unit;
handle : Gctx.gctx -> Gctx.event -> unit;
size : unit -> Gctx.dimension;

}

(** A horizontal group of widgets *)
val hlist : widget list -> widget

(***)
(** {1 Label Widgets } *)
(***)

(** A record of functions that allows us to read and write the string
associated with a label. *)
type label_controller = { get_label : unit -> string;

set_label : string -> unit }

(***)
(** {1 Event Listeners } *)
(***)

(** An event listener processes events as they "flow" through
the widget hierarchy. *)
type event_listener = Gctx.gctx -> Gctx.event -> unit

(** Performs an action upon receiving a mouse click. *)
val mouseclick_listener : (unit -> unit) -> event_listener

15

(***)
(** {2 Notifier } *)
(***)

(** A notifier_controller is associated with a notifier widget.
It allows the program to add event listeners to the notifier.*)

type notifier_controller = { add_event_listener : event_listener -> unit; }

val notifier : widget -> widget * notifier_controller

(***)
(** {3 Canvas } *)
(***)

(** A widget that allows drawing to a graphics context *)

(** Canvases are just widgets with an associated notifier_controller.
The repaint method of a canvas is a parameter of the widget
constructor.*)

val bare_canvas : Gctx.dimension -> (Gctx.gctx -> unit) -> widget
val canvas : Gctx.dimension -> (Gctx.gctx -> unit) ->

widget * notifier_controller

(***)
(** {4 Value controller } *)
(***)

(** A controller for a value associated with a widget.

This controller can read and write the value. It also allows
change listeners to be registered by the application. These listeners are
run whenever this value is set. *)

type ’a value_controller = {
add_change_listener : (’a -> unit) -> unit;
get_value : unit -> ’a;
change_value : ’a -> unit
}

(** A utility function for creating a value_controller. *)
val make_controller : ’a -> ’a value_controller

16

C Appendix: Notifier widget implementation
This code uses the following function from the List library.
val iter : (’a -> unit) -> ’a list -> unit

1 (** A notifier widget is a widget "wrapper" that doesn’t take up any
2 extra screen space -- it extends an existing widget with the
3 ability to react to events. It maintains a list of of
4 event_listeners that eavesdrop on the events propagated through the
5 notifier widget.
6 When an event comes in to the notifier, it is passed to each
7 event_listener in turn, and then passed to the child widget. *)
8 let notifier (w: widget) : widget * notifier_controller =
9 let listeners = {contents = []} in {

10 repaint = w.repaint;
11 handle =
12 (fun (g: Gctx.gctx) (e: Gctx.event) ->
13 List.iter (fun h -> h g e) listeners.contents;
14 w.handle g e);
15 size = w.size
16 },{
17 add_event_listener =
18 fun (newl: event_listener) ->
19 listeners.contents <- newl :: listeners.contents
20 }

D Appendix: Java String class documentation
Constructors

String(String original) Initializes a newly created String object so that it represents
the same sequence of characters as the argument; in other words,
the newly created string is a copy of the argument string.

String(char[] value) Allocates a new String so that it represents the sequence of
characters currently contained in the character array argument.

Methods

int length() Returns the length of this string.

char[] toCharArray() Converts this string to a new character array.

boolean equals(Object obj) Compares this string to the specified object. The result is true
if and only if the argument is not null and is a String object that
represents the same sequence of characters as this object.

17

	Appendix: GUI Gctx interface (excerpt)
	Appendix: GUI Widget Interface (excerpt)
	Appendix: Notifier widget implementation
	Appendix: Java String class documentation

