
Programming Languages
and Techniques

(CIS1200)

Lecture 1

Introduction to Program Design

Introductions

• Dr. Stephanie Weirich*
– Levine 510
– http://www.cis.upenn.edu/~sweirich
– sweirich@seas.upenn.edu
– Office hours: Tuesdays 2:30-3:30PM

and by appointment

Extra Office hours TODAY: 3-4PM in Levine 510

CIS1200

*Pronounced phonetically as: “why rick”. I won’t get upset if you
mispronounce my name (really!). I will answer to anything remotely close, or,
you can just call me Stephanie. Whatever you feel comfortable with.

Head Teaching Assistants

CIS1200

Lauren Velegol

Claire Keller Katrina Liu

Mehak Dhaliwal

What is CIS 1200?

• CIS 1200 is a course in program design
• Practical skills

– ability to write larger (~1000 lines) programs
– increased independence

("working without a recipe")
– test-driven development, principled

debugging

• Conceptual foundations
– common data structures and algorithms
– several different programming idioms
– focus on modularity and compositionality
– derived from first principles throughout

• It will be fun!

CIS1200

Prerequisites

• We assume you can already write small programs (10 to 100 lines) in
some imperative or object-oriented language
– Java experience is strongly recommended
– CIS 1100 or AP CS is typical
– You should be familiar with editing code and running programs in some

language

• If you’re wondering whether you should be in CIS 1100 or 1200, see
here:
– https://advising.cis.upenn.edu/skip-1100
– If you still have doubts, come talk to us

CIS1200

https://advising.cis.upenn.edu/skip-1100

CIS 1200 Tools

• OCaml
– Industrial-strength, statically-typed functional

programming language
– Lightweight, approachable setting for learning

about program design
– Browser-based development tools: codio.com

• Java
– Industrial-strength, statically-typed

object-oriented language
– Many tools/libraries/resources available

– Browser-based development or local IDE

CIS1200

Why two languages??
• Clean pedagogical progression
• Everyone starts at the same place
• Practice in learning new tools
• New perspectives on programming

CIS1200

“[OCaml] made me better understand features of Java that seemed
 innate to programming, which were merely abstractions and
 assumptions that Java made. It made me a better Java
programmer.’’
 --- CIS 1200 Student

“[The OCaml part of the class] was very essential to
 getting fundamental ideas of comp sci across. Without the second
 language it is easy to fall into routine and syntax lock where you
 don't really understand the bigger picture.’’
 --- CIS 1200 Student

Course Structure and Logistics

All course material is available on the course website

http://www.seas.upenn.edu/~cis1200/

http://www.cis.upenn.edu/~cis1200

Course Grade Components
• Lectures (2% of final grade)

– Presentation of ideas and concepts, interactive demos, etc.
– Lecture notes, slides & video recordings available
– Participation using “Poll Everywhere”

• Recitations / Labs (8% of final grade)
– Practice and discussion in small group setting
– Wed/Thurs, grade based on participation
– Please help us rebalance, if asked

• Homework (40% of final grade)
– Practice with individual problem solving
– Help available from course staff in office hours
– Due Tuesdays, grade based on automated tests + style

• Exams (50% of final grade)
– Test foundations of program design
– Do you understand the terminology? Can you reason about programs? Can you synthesize

solutions?
– 2 midterms (14% each, dates on website) and a final (22%, TBA)

CIS1200

Warning: This will be a
challenging and
time consuming
(and rewarding)

course!

Homework: 9 programming assignments

• Submit on the course website
– You’ll get automated grade and style feedback
– Each will have limited submission attempts

• Due at midnight (23:59pm ET) on the due date
• Standard late policy, applies to most situations

-10 points if up to 24 hours late
-20 points if 24-48 hours late
no submissions accepted after that

• In emergencies, contact course staff at
cis1200@seas.upenn.edu

CIS1200

mailto:cis1200@seas.upenn.edu

Building a GUI Framework

Some of the homework assignments…

CIS1200

Computing with DNA

Image Processing
Chat Client/Server

Final project: Design a Game

CIS1200

Ed
• We use Ed for most communication in this course
– from us to you
– from you to us
– from you to each other

• If already registered for the course, you should be already signed up
– If not, you’ll get added when you enroll

• Ed supports anonymous questions
– Please check to see whether your question has already been asked; it helps us

deliver higher quality responses

CIS1200

Look to Ed for course announcements,
weekly “todo” lists, reminders, etc

In-Class Announcements

– Make sure you read the syllabus on the course website before the next
class

 http://www.seas.upenn.edu/~cis1200/
– If you are late to lecture, you will miss these announcements

CIS1200

Each lecture will start with reminders,
announcements, and a short recap

Recitations / Lab Sections

• Recitations start next week
– First meeting January 22/23
–Room locations on Path@Penn
–Please play a bit with the Codio platform before the first

recitation (instructions will be posted on Ed)

• Goals of first recitation
–Meet your TAs and classmates
–Practice with OCaml before your first homework is due

CIS1200

Academic Integrity
• Submitted homework must be your individual work
• OK (and encouraged!)
–Discussions of concepts
–Discussion of debugging strategies
–Verbally sharing experience

• Not OK
–Copying or otherwise looking at someone else’s code (including ChatGPT)
–Sharing your code in any way (cloud drive, github, paper and pencil, …)
–Using code from a previous semester

CIS1200

Penn’s code of academic integrity:
https://catalog.upenn.edu/pennbook/code-of-academic-integrity/

Enforcement
• Course staff will check for copying
– We use plagiarism-detection tools on your code

• Questions? See the course FAQ. If in doubt, ask.

CIS1200

Violations will be treated seriously!
 - zero credit
 - lowered course grade
 - referral to Center for Community
 Standards and Accountability

No Devices during Lecture
• Laptops closed… minds open
– Although this is a computer science class, the use of

electronic devices – laptops, phones, etc., during
lecture (except for participating in polls) is prohibited

• Why?
– Device users tend to surf/chat/

email/game/text/tweet/etc.
– They also distract those around them
– Better to take notes by hand
– You will get plenty of time in front of your computer

while working on the homework :-)

CIS1200

Program Design

Fundamental Design Process

CIS1200

1. Understand the problem
What are we trying to achieve?
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs?
On unusual ones? On invalid ones?

4. Implement the required behavior
Often by decomposing the problem into simpler ones
and applying the same recipe to each

Design is the process of translating informal specifications (“word
problems”) into running code

A Design Problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost: each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

What are we trying to achieve?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

What are we trying to achieve?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

Calculate profit as a function of ticket
price

What are we trying to achieve?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

What are the relevant concepts?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

What are the relevant concepts?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge, the fewer people can
afford tickets. In a recent experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10) increases attendance by
15. However, increased attendance also comes at increased cost; each attendee
costs four cents ($0.04). Every performance also has a base cost of $180.
What profit do you make at any given price?

CIS1200

profit = revenue – cost
revenue = price * attendees
cost = $180 + attendees * $0.04
attendees = some function of the ticket price

What are the relationships among
them?

Step 2: Formalize the Interface

CIS1200

(* Money is represented in cents. *)
let profit (price : int) : int = …

type annotations
declare the input

 and output types
comment documents
the design decision

N.b. OCaml will let you omit type annotations for functions, but including them is mandatory for CIS1200. Using type annotations is good documentation; they
also improve the error messages you get from the compiler. When you get a type error message from the compiler, the first thing you should do is check that
your type annotations are correct.

Goal: write a function that returns the profit when given the price
Idea: we’ll represent money in cents, using integers

N.b. Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE floating point standard, and
floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime in your favorite programming language…

let keyword indicates a top-level
function or variable definition

Step 3: Write test cases
The design problem gives us an easy way to calculate the expected result
for one specific test case:

CIS1200

let profit_500 : int =
 let price = 500 in
 let attendees = 120 in
 let revenue = price * attendees in
 let cost = 18000 + 4 * attendees in
 revenue - cost

Local variables introduced
with let … = … in syntax

Type annotations for variables are
optional (but recommended)

Top-level variable defined
using let without in

Write test cases
With a little thinking, we write down another test case:

CIS1200

let profit_490 : int =
 let price = 500 - 10 in
 let attendees = 120 + 15 in
 let revenue = price * attendees in
 let cost = 18000 + 4 * attendees in
 revenue - cost

Recall: “Decreasing the price by a dime ($.10)
increases attendance by 15”

Add the Test Cases to the Program
Record the test cases as assertions:

CIS1200

let test500p () : bool =
 (profit 500) = profit_500

;; run_test "profit at $5.00" test500p

a test is a function that takes no input and
returns true if the test succeeds

the command run_test
executes a test

the string in quotes identifies
the test in printed output

(in case it fails)

parentheses are only used for
disambiguation and are not
always required when
calling functions

double semicolons
mark top-level
commands

Step 4: Implement the Behavior
profit, revenue, and cost are easy to define:

CIS1200

let attendees (price : int) : int = …write it later…

let revenue (price : int) : int =
 price * (attendees price)

let cost (price : int) : int =
 18000 + (attendees price) * 4

let profit (price : int) : int =
 (revenue price) – (cost price)

Apply the Design Pattern Recursively
attendees requires a bit of thought. Start with tests…

CIS1200

let attendees (price : int) : int =
 failwith “unimplemented”

let test500a () : bool =
 (attendees 500) = 120
;; run_test "attendees at $5.00" test500a

let test490a () : bool =
 (attendees 490) = 135
;; run_test "attendees at $4.90" test490a

create the tests
from the problem

statement first.
*Note that the definition of attendees must go before the definition of profit
 because profit uses attendees.

“stub out”
unimplemented

functions

Attendees vs. Ticket Price

CIS1200

0

20

40

60

80

100

120

140

160

 $4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

$0.10

15

($5.00, 120 attendees)

let attendees (price:int) : int =
 15/(-10) * price + 870

Problem statement gives a linear relationship
between ticket price (p) and number of attendees (a).

Equation for a line: y = mx + b i.e., b = y - mx

m = difference in attendance / difference in price
 = 15 / -10
b = 120 – m * 500
 = 870

Run it!

CIS1200

CIS1200

Uh Oh…

CIS1200

The test cases for attendees failed!

Why?

let attendees (price:int) : int =
 15/(-10) * price + 870

Uh Oh…

CIS1200

The test cases for attendees failed!

Integer division produces integers:
15 / -10 evaluates to -1, because -1.5 rounds to -1

* Multiplying 15*price before dividing by -10 increases the precision because rounding errors don’t creep in.

let attendees (price:int) : int =
 (15 * price) / (-10) + 870

Improved* version:

CIS1200

How Not to Solve This Problem

This program also passes all our tests…

Nevertheless, it is bad because it…
– hides the structure and abstractions of the problem
– duplicates code that could be shared
– doesn’t document its interface via types and comments

CIS120

let profit price =
 price * (15 * price / (-10) + 870) -
 (18000 + 4 * (15 * price / (-10) + 870))

Summary (I)

CIS1200 promotes a structured design process:
1. Understand the problem
2. Formalize the interface
3. Write test cases
4. Implement the desired behavior

CIS1200

Summary (II)
Modern software development relies heavily on test-driven development
in strongly typed languages
– Write tests early in the programming process and use them to drive the rest of

the process

For CIS 1200 homework:
– We will provide initial tests for each part of the project
– They will generally not be complete
– You should start each part by making up more tests

CIS1200

Types help structure the code.
Tests help get the details right.

What's next?

CIS1200

