
Programming Languages
and Techniques

(CIS1200)

Lecture 3

Value-Oriented Programming (continued)
Lists and Recursion

CIS 1200 Announcements
• Homework 1: OCaml Finger Exercises

– Due: Tuesday, 1/28 at midnight
– Must submit to Gradescope website
– Use the ’Zip’ option in the ‘Run Submission’ menu

not Codio’s “export as zipfile”

• Reading: Please read up through Chapter 3
• Questions?

– Post to Ed (privately if you need to include code!)
– Look at HW1 FAQ

• TA and instructor office hours: see course Calendar webpage
• Recitations start today!

No Devices during Lecture
• Laptops closed… minds open

– Although this is a computer science class, the
use of electronic devices – laptops, phones,
etc., during lecture (except for participating in
quizzes) is prohibited

• Why?
– Device users tend to surf/chat/

email/game/text/tweet/etc.
– They also distract those around them
– Better to take notes by hand
– You will get plenty of time in front of your

computer while working on the homework :-)

CIS1200

Poll Everywhere

Poll Everywhere Basics
• Beginning today, we’ll use Poll Everywhere in each lecture

– You can use your phone, laptop, etc., (but only for polls!)

• Polls are restricted to registered participants
• Register with your Penn Email Address if you haven’t already

Review

Value-Oriented Programming
• OCaml promotes a value-oriented style:

Most of what we write is expressions denoting values
• We can visualize running an OCaml program as a sequence of

calculation or simplification steps that eventually lead to a final value

 (300 + 12) * 60 + 17
⟼ 312 * 60 + 17
⟼ 18720 + 17
⟼ 18737

Functions

let total_seconds (hours:int)
 (minutes:int)
 (seconds:int)
 : int =
 (hours * 60 + minutes) * 60 + seconds

(Top-level) Function Declarations

function name parameter names parameter types

result type
function body (an expression)

Function Calls
Once a function has been declared, it can be invoked by writing the
function name followed by a sequence of arguments. The whole
expression is a function application.

 (Note: the sequence of arguments is not parenthesized.)

total_seconds 5 30 22

Calculating With Functions
To calculate the value of a function application, first calculate
values for its arguments and then substitute them for the
parameters in the body of the function.

 total_seconds (2 + 3) 12 17
⟼ total_seconds 5 12 17
⟼ (5 * 60 + 12) * 60 + 17 substitute args in body
⟼ (300 + 12) * 60 + 17
⟼ 312 * 60 + 17
⟼ 18720 + 17
⟼ 18737

let total_seconds (hours:int)
 (minutes:int)
 (seconds:int)
 : int =
(hours * 60 + minutes) * 60 + seconds

What is the value computed for ‘answer’ in the following
program? (0 .. 9)

let answer : int =
 let x = 3 in
 let f (y : int) = y + x in
 let x = 1 in
 f x

let answer : int =
 let f (y : int) = y + 3 in
 let x = 1 in
 f x

let answer : int =
 let f (y : int) = y + 3 in
 f 1

let answer : int =
 1 + 3

let answer : int =
 4

Typechecking Functions
Function types are written with “arrow” notation:

(We’ll have more to say about functions and their types later on…)

total_seconds : int -> int -> int -> int

the last one
is the result typethe ones to the left

of -> are input types

Typechecking Function Calls

total_seconds 5 20 32

(((total_seconds 5) 20) 32)

: int -> int -> int

: int -> int

: int : int: int: int -> int -> int -> int

: int Applying a function matches
the input type to the argument type
leaving the type on the right-hand

 side of the ->.

Really
means

Too Many Arguments = Type Error

total_seconds 5 20 32 17

((((total_seconds 5) 20) 32) 17)

: int -> int -> int

: int -> int

: int : int: int: int -> int -> int -> int

: int
ERROR: Expected int -> int but

found int!

Lists

A Value-Oriented Approach
to Sequential Data

Lists: Sequences of Data
• Often, we collect information that …

– is ordered in some way
– allows repeated values
– may be of unknown size

• Examples:
– words in a sentence: [“the”; “quick”; “brown”; “fox”; …]
– DNA sequences of amino acids: [G;A;T;T;A;C;A]
– phone numbers in a contacts list, voicemail list, etc.
– options in a menu: [Open; Save; Close; Export;…]
– and many others…

What is a list?

• Here, the infix operator ‘::’ constructs a new list from a head element
and a shorter list
– This operator is pronounced “cons” (short for “construct”)

• Importantly, there are no other kinds of lists

A list value is either:
 [] the empty list, sometimes called nil
or
v :: tail a head value v, followed by a list of the
 remaining elements (the tail)

Example Lists
To build a list, we “cons together” its elements, ending with the empty
list:

1::2::3::4::[]

"abc"::"xyz"::[]

a list of four ints

a list of two strings

(false::[])::(true::[])::[] a list of lists that each
contain booleans

[] the empty list

Explicitly parenthesized
‘::’ is a binary operator like + or ^; it takes an element and a list of

further elements as its two inputs:

1::(2::(3::(4::[])))

"abc"::("xyz"::[])

(false::[])::((true::[])::[])

[]

Unlike + and ^, cons is right associative: a :: b :: c means a :: (b :: c) and not (a :: b) :: c

a list of four ints

a list of two strings

a list of lists that each
contain booleans

the empty list

Convenient Syntax
A lighter notation: enclose a list of elements in
[and] separated by ;

[1;2;3;4]

["abc";"xyz"]

[[false];[true]]

[]

a list of four ints

a list of two strings

a list of lists that each
contain booleans

the empty list

Convenient Syntax
The two ways of writing lists can be freely mixed.

1 :: [2;3;4] a list of four ints

Some Non-Lists
These are not lists:

[1;true;3;4]

1::2

different element types*

2 is not a list

3::[]::[] different element types

*Lists in OCaml are homogeneous – all of the list elements must be of the same type.

List Types
The type of lists of integers is written
 int list
The type of lists of strings is written
 string list
The type of lists of booleans is written
 bool list
The type of lists of lists of strings is written
 (string list) list
or
 string list list
etc.

In OCaml, all types are "first
class," so any type of values

can be stored in a list.
 (We'll see more about

about that in a few lectures.)

Which of the following expressions has the type
 int list ?

1) [3; true]

2) [1;2;3]::[1;2]

3) []::[1;2]::[]

4) (1::2)::(3::4)::[]

5) [1;2;3;4]

Answer: 5

Which of the following expressions has the type
 (int list) list ?

1) [3; true]

2) [1;2;3]::[1;2]

3) []::[1;2]::[]

4) (1::2)::(3::4)::[]

5) [1;2;3;4]

Answer: 3

Calculating With Lists
Calculating with lists is like calculating with arithmetic
expressions: just simplify each subexpression in the list
expression.

 (2+3)::(12 / 5)::[]

A list is a value whenever all of its elements are values.

⟼ 5::2::[] because 12/5 ⇒ 2
⟼ 5::(12 / 5)::[] because 2+3 ⇒ 5

Inspecting lists
• So far, we’ve seen how to build lists in OCaml
• To write list-processing programs, we also need to inspect existing lists

(so that we can do things with the data in them)

Pattern Matching
OCaml provides a pattern matching construct for inspecting a list and giving names
to its subcomponents.

Case analysis is justified because there are only two shapes a list can have.

Note that first and rest are identifiers that are bound in the body of the branch
– first names the head of the list; its type is the element type.
– rest names the tail of the list; its type is the list type

The type of the match expression is the (one) type shared by its branches.

let foo (l : int list) : int =
 begin match l with
 | [] -> 42
 | first::rest -> first+10
 end

match expression
syntax is:

begin match … with
 | … -> …
 | … -> …
end

case
branches

names for the head and tail

Calculating with match
• Consider how to evaluate a match expression:
 foo [1;2;3]
 ⟼
 begin match [1;2;3] with
 | [] -> 42
 | first::rest -> first + 10
 end

Calculating with match
• Consider how to evaluate a match expression:
 foo [1;2;3]
 ⟼
 begin match 1::(2::(3::[])) with
 | [] -> 42
 | first::rest -> first + 10
 end

Recall: [1;2;3] means 1::(2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
 foo [1;2;3]
 ⟼
 begin match 1::(2::(3::[])) with
 | [] -> 42
 | first::rest -> first + 10
 end

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
 foo [1;2;3]
 ⟼
 begin match 1::(2::(3::[])) with
 | [] -> 42
 | first::rest -> first + 10
 end

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))
(2). pattern first::rest does match 1::(2::(3::[]))
 first = 1
 rest = (2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
 foo [1;2;3]
 ⟼
 begin match [1;2;3] with
 | [] -> 42
 | first::rest -> first + 10
 end

⟼
 1 + 10

⟼
 11

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))
(2). pattern first::rest does match 1::(2::(3::[]))
 first = 1
 rest = (2::(3::[]))
 …so: substitute in that branch.

Recursion

The Inductive Nature of Lists

• Why is this well-defined? The definition of list mentions ‘list’!
• Solution: ‘list’ is inductive:

– The empty list [] is the (only) list of 0 elements
– To construct a list of n+1 elements, add a head element to an existing

list of n elements
– The set of list values contains all and only values constructed this way

• Corresponding computation principle: recursion

A list value is either:
 [] the empty list, sometimes called nil
or
v :: tail a head value v, followed by a list value

 containing the remaining elements, the tail

Recursion

• Example:
length (1::2::3::[]) = 1 + length (2::3::[])
length (2::3::[]) = 1 + length (3::[])
length (3::[]) = 1 + length []
length [] = 0

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller parts of the
input.
– The structure of the computation follows the inductive

structure of the input.

Recursion Over Lists

let rec length (l : string list) : int =
 begin match l with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

The function calls itself recursively, so
the function declaration must be
marked with rec.

Lists are either empty or nonempty;
pattern matching determines which.

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

CIS1200

Structural Recursion Over Lists
Structural recursion builds up an answer from answers for smaller components:

The branch for [] calculates the value (f []) directly
 – this is the base case of the recursion

The branch for hd::rest calculates f (hd::rest) given hd and (f rest).
 – this is the inductive case of the recursion

let rec f (l : … list) … : … =
 begin match l with
 | [] -> …
 | (hd :: rest) -> … f rest …
 end

Calculating with pattern matching and recursion

Calculating with Recursion
length ["a"; "b"]

⟼ (substitute the list for l in the function body)
 begin match "a"::"b"::[] with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

⟼ (second case matches with rest = "b"::[])

 1 + length ("b"::[])
⟼ (substitute the list for l in the function body)

 1 + begin match "b"::[] with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

⟼ (second case matches again, with rest = [])

 1 + (1 + length [])
⟼ (substitute [] for l in the function body, and then continue)

 1 + (1 + 0) ⇒ 2

let rec length (l:string list) : int =
 begin match l with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

