Programming Languages
and Techniques
(C1S1200)

Lecture 4

Lists, Recursion, and Tuples

CIS 1200 Announcements

e Homework 1: OCaml Finger Exercises

— Due: Tuesday at 11.59pm ET
— Must submit via course website

— Use the 'Zip’ option in the ‘Run Submission” menu
not Codio’s “export as zipfile”

* Read Chapters 3 (Lists) and 4 (Tuples)
of the lecture notes

 We will start Chapters 5 & 6 on Monday

Review: What is a list?

A list is either:
[] the empty list, sometimes called nil

or
v :: taill aheadvaluev, followed by a list of the
remaining elements, the tail

* The list typeis an example of an inductive datatype
* We inspect a list value by pattern matching against its shape

* The natural way to process a list is with structural recursion

Calculating with Matches

e Consider how to evaluate a match expression:
begin match [1;2;3] with
| [] -> 42
| first::rest -> first + 10

end
— Note: [1;2;3] means1::(2::(3::[1))
1 + 10
It doesn’t match the pattern [], so the first branch is
—> . o
11 skipped, but it does match the pattern
first::restwhenfirstisland
restis(2::(3::[1)).
So we substitute 1 for f1rst in the second branch.

The Inductive Nature of Lists

A list value is either:
[] the empty list, sometimes called nil

or

v ::tail aheadvalue vy, followed by {Jistkalue

containing the remaining elements, the tail

* Why is this well-defined? The definition of list mentions ‘list’!
* Answer: ‘list’ is inductive:
— The empty list [] is the (only) list of 0 elements

— To construct a list of n+1 elements, add a head element to an existing list of n
elements

— The set of list values contains all and only values constructed this way

* Corresponding computation principle: recursion

Recursion

Recursion principle:
Compute a function value for a given input by combining
the results for strictly smaller parts of the input.

— The recursive structure of the computation follows the
inductive structure of the input.

 Example:
length (1::2::3::[]1) = 1 + length (2::3::[1)
length (2::3::[1) = 1 + length (3::[1)
length (3::[1) = 1 + length []

length [] = 0

Recursion Over Lists

The function calls itself recursively Lists are either empty or
so the function declaration must nonempty. Pattern matching
be marked with rec determines which.

4///////

¥
let rec length Q}/f/gi:;ng list) : int =

begin match 1 with
I [] > 0
| (x :: rest) -> 1 + length rest

end \ 1//”

ll ”

If the list is non-empty, then
is the first string in the list and “rest”
is the remainder of the list.

Calculating with pattern matching and recursion

Calculating with Recursion

length ["a"; "b"]
(substitute the list for | in the function body)
begin match "a"::"b"::[] with
Il [] -> 0
| (x :: rest) -> 1 + length rest
end

(second case matches with rest = "b"::[])
1 + length ("b"::[1)

(substitute the list for | in the function body)
1 + begin match "b"::[] with

Il [] -> 0

| (x :: rest) -> 1 + length rest

end

(second case matches again, with rest = [])
1 + (1 + length []) let rec length (l:string list) : int=
))) begin match 1 with
(substitute [] for I in the function body) I 0 ->0

| (x :: rest) > 1 + length rest
end

1+1+0=2

More recursion examples...

let rec sum (1 : int 1list) : int =
begin match 1 with
| [] > 0
| (X :: rest) -> X + sum rest
end

let rec contains (l:string list) (s:string):bool =
begin match 1 with
| [1 -> false
| (X :: rest) -> s =x || contains rest s
end

“n

4: What best describes the behavior of (foo 3 |) ? It returns true if...

let rec foo (z:int) (1 : int list): bool =
begin match 1 with

I [0 -> true
| (x :: rest) ->

(x > z) & foo z rest
end

1. Every element of lis less than 3.

2. Every element of lis greater than 3

3. There exists an element in [that is less than 3

4. There exists an element in [that is greater than 3

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

<0

What best describes the behavior of the function call (foo 3 1) ?
It returns true if...

let rec foo (z:int) (1 : int list): bool =
begin match 1 with
| [] -> true
| (x :: rest) ->
(x > z) && foo z rest
end

Answer: every element is greater than 3

The General Pattern:
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1Ilist) .. : .. =
begin match 1 with
I [-> .. (* BASE CASE *)
| C hd :: rest) ->
.. (f rest) .. (* INDUCTIVE CASE *)
end

The branch for [] calculates the value (f []) directly.
— this is the base case of the recursion

The branch for hd: : rest calculates
(f (hd::rest))givenhdand (f rest).

—this is the inductive case of the recursion

Two Forms of Structured Data

OCaml provides two basic ways of packaging multiple values
together into a single compound value:
* Lists:
— arbitrary-length sequence of values of a single type
— example: a list of email addresses
* Tuples:
— fixed-length sequence of values, possibly of different types

— example: tuple of name, phone #, and email

(Cartesian) Products

 The values of a tuple (or product) type are
tuples of values from each component type.

suppose the type t
has values X, Y, and Z

H

X

Y

: bool
4)
(X,) (X,),
Y,) Y,),
(Z,) (Z,),
\§ %
: t * bool

The tuple type t * bool has all pairs of values

Tuples

* |In OCaml, tuple values are created by writing a sequence of expressions,
separated by commas, inside parens:

let my_pair = (3, true)
let my_triple = (“Hello”, 5, false)
let my_quadruple = (1, 2, ”three”, false)

* Tuple types are written using infix ‘*’
— e.g.,my_triple has type:

string * int * bool

Pattern Matching on Tuples

e Tuples can be inspected by pattern matching:

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
=

“b”

e As with lists, tuple patterns follow the syntax of tuple values and give
names to the subcomponents so they can be used on the right-hand
side of the -> in each case

Mixing Tuples and Lists

e Tuples and lists can mix freely:

[(1,"a"); (2,"b"); (3,"c")] : (int * string) list

([1;2;3], ["a"; "b"; "c"]) : (int list) * (string list)

Nested Patterns

 We're seen several kinds of simple patterns:

[] matches empty list

x::tl matches nonempty list

(a,b) matches pairs (tuples with 2 elts)
(a,b,c) matches triples (tuples with 3 elts)

 We can build nested patterns out of simple ones:

x :: [] matches lists with exactly 1 element
[x] matches lists with exactly 1 element
x::(y::tD) matches lists with at least 2 elements

(X::XS, Y::yYS) matches pairs of non-empty lists

Wildcard Pattern

* Another handy simple pattern is the wildcard " "

* A wildcard pattern indicates that the value of the is not used on the
right-hand side of the match case

— And hence needs no hame

o tl matches a non-empty list, but only names its tail

(_,X) matches a pair (2-tuple), but only names the 2" part

Unused Branches

 The branches in a match expression are considered in order from top to

bottom

* If you have redundant matches, then later branches are not reachable

— OCaml will give you a warning in this case

| x::y::tl
end

let bad_cases (1
begin match 1 with

| [1 -> 0 his case matches more lists
than that one does
| x::i_ % é”””’,,,,,——fff’

=> X + Yy

: int 1list) : int =

(* unreachable *)

.

4: What is the value of this expression?

70

What is the value of this expression?

let 1 =[1; 2] in

begin match 1 with

[x :ty it —>
[x :: [->
I x :: t ->
[[] ->

end

1
2
3

1

2

3

2 4

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

What is the value of this expression?

let 1 =1[1; 2] i

begin match 1 with

| x vy 1ot > 1

| x :: [] -> 2

| x :: t -> 3

| [] -> 4
end

Answer: 1

.

4: What is the value of this expression?

70

1
2
What is the value of this expression?
let 1 = [(2,true); (3,false)] in 3
begin match 1 with
| (x,false) :: tl -> 1
fw i (X,y) 11 z -> X
I x -> 4 4
end

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (x,false) :: tl -> 1
' w i (X,y) 11z -> X
| X -> 4

end

Answer: 3

Exhaustiveness

* A pattern match is said to be exhaustive if it includes a pattern for every
possible value

 Example of a non-exhaustive match:

let sum_two (1 : int list) : int =
begin match 1 with
| X:iy:ii_ -> X+y
end

e OCaml will give you a warning and show an example of what isn’t
covered by your patterns

Exhaustiveness

 Example of an exhaustive match:

let sum_two (1 : int list) : int =
begin match 1 with
| X:iy:ii_ -> X+y
| _ -> failwith "length less than 2"
end

 The wildcard pattern and failwith eliminate the warning and make your
intention explicit

Pattern Matching in Let

OCaml's'let X = e 1n .. notation can bind a pattern instead of a
single variable:

let (x, y) = (true,"abc") in ..

Very useful for naming tuple components

Should avoid using when the pattern is not exhaustive (i.e., there are
multiple cases)
— that is what match is for

see patterns.ml

Example: zip

e zip takes two lists of the same length and returns a single list of pairs:

zip [1; 2; 3] ["a"; "b"; "c"] =
[(1,%a"); (2,"b");5 (3,"c")]

let rec zip (11: int 1list)
(12: string list) : (int * string) list =
begin match (11, 12) with
| CLd, 01D -> L[]
| (X:: Xs, y:: ys) -> (X, y) :: (zip xs ys)
| _ > []

end

