
Programming Languages
and Techniques

(CIS1200)

Lecture 6

Binary Trees and Binary Search Trees
(Lecture notes Chapters 6 and 7)

CIS 1200 Announcements
• HW02 available today, due next Tuesday at 11.59pm

• Please fill out the intro survey (coming soon, details on Ed)

Binary Trees

A particular form of tree-structured data

Binary Trees

CIS1200

3

2

0 1

2

3 1

root node

root’s
right child

root’s
left child

left subtree

leaf node

A binary tree is either empty, or a node with two subtrees, both of which are also binary trees.
A nonempty subtree of a node is called a child node.
We call a node whose subtrees are both empty a leaf node. The top node is the root.

empty

Trees are drawn upside-down

CIS1200

3

2

0 1

2

3 1

root node

root’s
right child

root’s
left child

left subtree

leaf node

empty

A binary tree is either empty, or a node with two subtrees, both of which are also binary trees.
A nonempty subtree of a node is called a child node.
We call a node whose subtrees are both empty a leaf node. The top node is the root.

Another Binary Tree

CIS1200

0

8

1 3

-1

1

7
Binary trees may not be balanced
(some branches may be longer than others)

root node

empty

leaf node
 (both subtrees are empty)

internal node root's right child

node with only one child
(right subtree is empty)

Binary Trees in OCaml

type tree =
| Empty
| Node of tree * int * tree

3

1 2

4

let t : tree =
 Node (Node (Empty, 1, Empty),
 3,
 Node (Empty, 2,
 Node (Empty, 4, Empty)))

=

CIS1200

Representing trees

5

1

0 3

7

9

8

type tree =
| Empty
| Node of tree * int * tree

Empty

Node (Empty, 0, Empty)

Node (Node (Empty, 0, Empty),
 1,
 Node (Empty, 3, Empty))

CIS1200

Working with binary trees

see tree.ml
treeExamples.ml

Some functions on trees

(* counts the number of nodes in the tree *)
let rec size (t:tree) : int =
 begin match t with
 | Empty -> 0
 | Node(l,_,r) -> 1 + (size l) + (size r)
 end

(* length of longest path from the root to a leaf *)
let rec height (t:tree) : int =
 begin match t with
 | Empty -> 0
 | Node(l,_,r) -> 1 + max (height l) (height r)
 end

Structural Recursion Over Trees
Structural recursion builds an answer from smaller components:

The branch for Empty calculates the value (f Empty) directly.
 – this is the base case of the recursion

The branch for Node(l,x,r) calculates
 (f (Node(l,x,r)) given x and (f l) and (f r).
 – this is the inductive case of the recursion

let rec f (t : tree) … : … =
 begin match t with
 | Empty -> …
 | Node(l,x,r) -> … (f l …) … x … (f r …) …
 end

CIS1200

let rec f (t : tree) … : … =
 begin match t with
 | Empty -> …
 | Node(l,x,r) -> … (f l …) … x … (f r …) …
 end

Tree vs. List Recursion

CIS1200

let rec f (l : … list) … : … =
 begin match l with
 | [] -> …
 | (hd :: rest) -> … hd … (f rest …) …
 end

Two recursive calls, for left and right sub trees,
versus one for lists.

Tree Traversals

Recursive Tree Traversals

Pre-Order
root @ left @ right

1

2

3 4

5

6

7

In Order
left @ root @ right

4

2

1 3

5

7

6

Post-Order
left @ right @ root

7

3

1 2

6

5

4

let rec f (t:tree) : int list =
 begin match t with
 | Empty -> []
 | Node(l, x, r) ->
 let root = [x] in (* process root *)
 let left = f l in (* recursive call left subtree *)
 let right = f r in (* recursive call right subtree *)
 … combine root, left, and right …
 end

Traversals
vary the order
in which these
are combined…

0

1

2 87

In what sequence will the
nodes of this tree be visited
by a post-order traversal?

1. [0;1;6;2;7;8]
2. [0;1;2;6;7;8]
3. [2;1;0;7;6;8]
4. [7;8;6;2;1;0]
5. [2;1;7;8;6;0]

Answer: 5

6

Post-Order
left @ right @ root

4

2

1 3

5

6

7

What is the result of applying
this function on this tree?

1. []

2. [1;2;3;4;5;6;7]

3. [1;2;3;4;5;7;6]

4. [4;2;1;3;5;6;7]

5. [4]

6. [1;1;1;1;1;1;1]

7. none of the above
Answer: 3

let rec inorder (t:tree) : int list =
 begin match t with
 | Empty -> []
 | Node (left, x, right) ->
 (inorder left) @ [x] @ (inorder right)
end

Trees as Containers

See tree.ml and treeExamples.ml

Trees as Containers
• Like lists, binary trees aggregate data
• As we did for lists, we can write a function to determine whether the data structure

contains a particular element

type tree =
| Empty
| Node of tree * int * tree

Searching for Data in a Tree

• This function searches through the tree t, looking for a number n
• The || operator is a short-circuiting “or”

– When computing b||c, if b simplifies to true, then c is ignored
– This can save time if simplifying c is expensive

• Even so, contains might have to traverse the entire tree

let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 x = n || contains lt n || contains rt n
 end

Search during (contains t 3)

5

1

0 3

7

9

8

✓

let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 x = n || contains lt n
 || contains rt n
 end

Search during (contains t 8)

5

1

0 3

7

9

8✓

let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 x = n || contains lt n
 || contains rt n
 end

Ordered Trees

Big idea: find things faster by searching less

Key Insight:
 Ordered data can be searched more quickly

– This is why dictionaries are arranged alphabetically
– But it requires the ability to focus on (roughly) half of the current data

Binary Search Trees
• A binary search tree (BST) is a binary tree with an additional invariant*:

• The BST invariant means that container functions can take time proportional to the
height instead of the size of the tree.

• Node(lt,x,rt) is a BST if:
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

*A data structure invariant is a set of constraints about the way that the data is organized.
“types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

5

1

0 3

7

9

8

<

<

<

>

> >

Note that the BST
invariants hold for
this tree!

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

4

2

1 5

6

8

7

Is this a BST??

1. yes
2. no

Answer: no, 5 to the left of 4

9

1

2

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: Yes

3

4

5

6

4

2

1 3

5

6

7
• Node(lt,x,rt) is a BST if

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: no, 7 to the left of 6

4

2

1 3

4

9

8
• Node(lt,x,rt) is a BST if

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: no, 4 to the right of 4

4

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: yes

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: yes

Search in a BST: (lookup t 8)

5

1

0 3

7

9

8

<

<

<

>

> >

8 > 5

8 > 7

8 < 9

✓

Searching a BST

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input

is not a BST!
– This function assumes that the BST invariants hold of t.

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 if x = n then true
 else if n < x then lookup lt n
 else lookup rt n
 end

Demo

bst.ml – compare contains and lookup

BST Performance
• lookup takes time proportional to the height of the tree.

– not the size of the tree (as we saw for contains on unordered trees)

• In a balanced tree, the lengths of the paths from the root to each leaf are (almost)
the same.
– no leaf is too far from the root
– the height of the BST is minimized
– the height of a balanced binary tree is roughly log2(N) where N is the number of nodes in the tree

0
1

3
5

7
9

5

1

0 3

7

9

balanced unbalanced

Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

Inserting into a BST
• Suppose we have a BST t and a new element n, and we wish to compute a

new BST containing all the elements of t together with n
– Need to make sure the tree we build is really a BST – i.e., make sure to put n in the right place!

• This way we can build a BST containing any set of elements we like:
– Starting from the Empty BST, apply this function repeatedly to get the BST we want
– If insertion preserves the BST invariants, then any tree we get from it will be a BST by

construction
• No need to check!

– Later: we can also “rebalance” the tree to make lookup even more efficient
• (NOT in CIS 120; see CIS 121)

First step: find the right place…

Inserting a new node: (insert t 4)

5

1

0 3

7

9

8

<

<

<

>

> >

4 < 5

4 > 1

4 > 3

?

Inserting a new node: (insert t 4)

5

0 3

7

9

1

8

<

<

<

>

> >

4

3

1

5

Inserting into a BST

• Note similarity to searching the tree
• If t is a BST, the result is also a BST (why?)
• The result is a new tree with (possibly) one more Node; the

original tree is unchanged

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

Critical point!

Deleting an Element from a BST

delete : tree -> int -> tree

Deletion – No Children: (delete t 3)

5

1

0 3

7

9

8

<

<

<

>

> >

3 < 5

3 > 1

Deletion – No Children: (delete t 3)

5

1

0

7

9

8

<

<

<

>

>

If the node to be deleted has no
children, simply replace it by
the Empty tree.

Deletion – One Child: (delete t 7)

5

1

0 3

7

9

8

<

<

<

>

> >

7 > 5

Deletion – One Child: (delete t 7)

5

1

0 3

9

8

<

< <

>

>

If the node to be delete has one
child, replace the deleted node
by the child.

Deletion – Two Children: (delete t 5)

5

1

0 3

7

9

8

<

<

<

>

> >

Deletion – Two Children: (delete t 5)

3

1

0

7

9

8

<

<

<

>

>

3

If the node to be delete has two
children, promote the maximum
child of the left tree.

Subtleties of the Two-Child Case
• Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves

nonempty trees.
– Suppose m is the maximum element of lt
– Then every element of rt is greater than m !

• (Why?)

• To promote m, we replace the deleted node by:
 Node(delete lt m, m, rt)
– I.e. we (recursively) delete m from lt and relabel the root node m
– The resulting tree satisfies the BST invariants

How to Find the Maximum Element?

5

1

0 3

7

9

8

What is the max
element of this
subtree?

How to Find the Maximum Element?

5

1

0 3

7

9

8

Just for fun, how
do we find the
max element of
this whole tree?

Tree Max

• BST invariant guarantees that the maximum-value node is farthest
to the right

• Note that tree_max is a partial* function
– Fails when called with an empty tree

• Fortunately, we never need to call tree_max on an empty tree!
– This is a consequence of the BST invariants and the case analysis done by

the delete function

let rec tree_max (t:tree) : int =
 begin match t with
 | Node(_,x,Empty) -> x
 | Node(_,_,rt) -> tree_max rt
 | _ -> failwith “tree_max called on Empty”
 end

* Partial, in this context, means “not defined for all inputs”.

