
Programming Languages
and Techniques

(CIS1200)

Lecture 8

Generics & First-class functions
Chapters 8 and 9

Announcements
• Homework 2 due tomorrow night at 11:59pm

• Complete the intro survey (link on Ed)

• Homework 3 available Wednesday
– Practice with BSTs, generic functions, first-class functions and abstract types
– Start early!

• Read: Chapters 8, 9, and 10 of the lecture notes

• Midterm 1: Friday, February 14th
– Covers chapters 1-10 in the lecture notes
– Details posted on Ed later this week

Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing... Do we have to
do it all again if we want to use BSTs containing strings, and again

for characters, and again for floats, and…?

or
How not to repeat yourself, Part I.

Structurally Identical Functions
• Observe: Many functions on lists don’t depend on the contents of the list, only on

the list structure
• Compare:

let rec length (l: int list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length tl
 end

let rec length (l: string list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length tl
 end

These functions are
identical aside
from the type
annotations.

Notation for Generic Types
• In OCaml, functions can have generic types

• Notation: 'a is a type variable, indicating that the function length can be used on
a t list for any type t

• Examples:
– length [1;2;3] use length on an int list
– length ["a";"b";"c"] use length on a string list

• Idea: OCaml chooses an appropriate type for'a whenever length is used

let rec length (l:'a list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + (length tl)
 end

Generic List Append

let rec append (l1:'a list) (l2:'a list) : 'a list =
 begin match l1 with
 | [] -> l2
 | h::tl -> h::(append tl l2)
 end

Note that the two input lists
must have the same type of
elements, namely 'a.

The return type is also
the same as the inputs.

Pattern matching works over generic types!

In the body of the branch:
 h has type 'a
 tl has type 'a list

Zip function
• Combine two lists into one list, ignoring extra elements

 zip [1;2;3] ["a";"b";"c"] ⟼ [(1,"a"); (2,"b"); (3,"c")]

• Does it matter what type of elements are in these lists?

let rec zip (l1:int list) (l2:string list) : (int*string) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2) :: (zip t1 t2)
 | _ -> []
 end

Generic Zip

• Distinct type variables can be instantiated differently:

 zip [1;2;3] ["a";"b";"c"]
• Here, 'a is instantiated to int, 'b to string
• Result is
 [(1,"a");(2,"b");(3,"c")]
 of type (int * string) list

let rec zip (l1:'a list) (l2:'b list) : ('a * 'b) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
 | _ -> []
 end

Functions can operate
over multiple generic
types.

Generic Zip

• Distinct type variables do not need to be instantiated differently:

 zip [1;2;3] [4;5;6]
• Here, 'a is instantiated to int, 'b to int
• Result is
 [(1,4);(2,5);(3,6)]
 of type (int * int) list

let rec zip (l1:'a list) (l2:'b list) : ('a * 'b) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
 | _ -> []
 end

Functions can operate
over multiple generic
types.

Intuition: OCaml tracks
instantiations of type variables
('a and 'b) and makes sure they
are used consistently.

• Recall our integer tree type:

• We can define a generic version by adding a type parameter, like this:

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

User-Defined Generic Datatypes

type tree =
| Empty
| Node of tree * int * tree

Parameter 'a
used here

Note that the recursive
uses of tree also
mention 'a

Parameter 'a
declared here

BST operations can be generic too; the only change is to the type
annotations

User-Defined Generic Datatypes

Equality and comparison are generic — they work for
any type of data, even strings, lists, and tuples!

(* Insert n into the BST t *)
let rec insert (t:'a tree) (n:'a) : 'a tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

Does the following function typecheck?

1. yes
2. no

let f (l : 'a list) : 'b list =
begin match l with
| [] -> true::l
| _::rest -> 1::l
end

Answer: no: even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

Does the following code typecheck?

1. yes
2. no

let f (x : 'a) : 'a =
 x + 1

;; print_endline (f “hello”)

Answer: no, the type annotations and uses of f aren’t consistent.

However, it is a bit subtle: without the use (f "hello") the code would be correct –
so long as all uses of f provide only 'int' the code is consistent! Despite the
"generic" type annotation, f really has type int -> int.

First-class Functions

Higher-order Programs
or

How not to repeat yourself, Part II.

let make_incr (n:int) : int->int =
 let helper (x:int) : int =
 n + x
 in
 helper
let y = twice (make_incr 1) 3

let twice (f:int->int) (x:int) : int =
 f (f x)

let add_one (z:int) : int = z + 1
let add_two (z:int) : int = z + 2
let y = twice add_one 3
let w = twice add_two 3 The function add_one is passed as

an argument to twice!

Result type is an arrow
(function) type

First-class Functions
• You can pass a function as an argument to another function

• You can return a function as the result of another function

function type: argument of type
int and result of type int

Argument is an expression
that produces a function

let add_one (x:int) : int = x+1
let add_two (x:int) : int = x+2
let add_three (x:int) : int = x+3

let func_list : (int -> int) list =
 [add_one; add_two; add_three]

You can store functions in data structures!

Functions as Data

let func_list1 : (int -> int) list =
 [make_incr 1; make_incr 2; make_incr 3]

a list of functions

a list of expressions that produce functions

Simplifying First-Class Functions

 twice add_one 3
⟼ add_one (add_one 3) substitute add_one for f, 3 for x

⟼ add_one (3 + 1) substitute 3 for z in add_one

⟼ add_one 4 3+1⇒ 4

⟼ 4 + 1 substitute 4 for z in add_one

⟼ 5 4+1⇒ 5

let twice (f:int->int) (x:int) : int =
 f (f x)

let add_one (z:int) : int = z + 1

Simplifying First-Class Functions

 make_incr 3
 substitute 3 for n

⟼ let helper (x:int) = 3 + x in helper
⟼ ???

let make_incr (n:int) : int->int =
 let helper (x:int) : int = n + x in
 helper

Simplifying First-Class Functions

 make_incr 3
 substitute 3 for n

⟼ let helper (x:int) = 3 + x in helper
⟼ fun (x:int) -> 3 + x anonymous function value

keyword “fun”
“->” after arguments,

no return type annotation

let make_incr (n:int) : int->int =
 let helper (x:int) : int = n + x in
 helper

Function values

let add_one (x:int) : int = x+1

Part 1: create a
function value

Part 2: define a name
for this value

A standard function definition…

The two definitions of add_one have exactly the same type and behave exactly
the same. (The first is just an abbreviation* for the second.)

let add_one : int->int = fun (x:int) -> x+1

…is really an abbreviation for this:

*computer scientists like to use the term “syntactic sugar” for such abbreviations. Such
abbreviations make it “sweeter “to write simpler, tastier code, which “desugars” into more complex stuff

Anonymous functions
let add_one (z:int) : int = z + 1
let add_two (z:int) : int = z + 2
let y = twice add_one 3
let w = twice add_two 3

let y = twice (fun (z:int) -> z+1) 3
let w = twice (fun (z:int) -> z+2) 3

a function value,
passed as an argument

to twice

Function Types
• Functions have types that look like this:

• Examples:

tin -> tout

int -> int

int -> bool * int

int -> int -> int int input

(int -> int) -> int function input

Parentheses matter!

int -> int -> int
 = int -> (int -> int)
 ≠ (int -> int) -> int

Function Types
Hang on… did we just say that

and

mean the same thing??

int -> int -> int

int -> (int -> int)

Yes!

2 = 1 + 1
A function that takes two arguments…

has the same type as a function that takes one argument
and returns a function that takes one argument

int -> int -> int

int -> (int -> int)

This is actually useful!

Multiple Arguments

let sum (x : int) (y:int) : int = x + y

let sum = fun (x:int) -> fun (y:int) -> x + y

let sum : int -> int -> int

create a function valuedefine a variable with
that value

We can decompose a standard function definition

into parts:

The two definitions of sum have the same type and behave the same!

that returns a function value

Partial Application

sum 3
⟼ (fun (x:int) -> fun (y:int) -> x + y) 3 definition
⟼ fun (y:int) -> 3 + y substitute 3 for x

let sum (x : int) (y:int) : int = x + y

the result of a “partially applied function” is
itself a function (that can later be applied)

What good is partial application?
Consider this filter function:

let rec filter (p:'a -> bool) (l:'a list) : 'a list =
 begin match l with
 | [] -> []
 | x::xs -> if p x then x :: (filter p xs) else (filter p xs)
 end

let larger = filter (fun x -> x > 10)
let smaller = filter (fun x -> x <= 10)

larger [1;17;120;4;10] ⇒ [17;120]
smaller [1;17;120;4;10] ⇒ [1;4;10]

filter selects elements of a list based on a predicate p.

We can create specialized “instances” by partial application…

and use them as ordinary list-processing functions.

Upshot: higher-order functions
like filter are a very useful way
to structure library interfaces…

What is the value of this expresssion?

1. 1
2. true

3. fun (y:int) -> if true then 1 else y
4. fun (x:bool) -> if x then 1 else y

let f (x:bool) (y:int) : int =
 if x then 1 else y in

f true

Answer: 3

What is the value of this expression?

1. 1
2. 2

3. 3
4. 4
5. 5

let f (g : int->int) (y: int) : int =
 g 1 + y in

f (fun (x:int) -> x + 1) 3

Answer: 5

What is the type of this expression?

1. int
2. int -> int

3. int -> int -> int
4. (int -> int) -> int -> int
5. ill-typed

let f (g : int->int) (y: int) : int =
 g 1 + y in

f (fun (x:int) -> x + 1)

Answer: 2

