Programming Languages
and Techniques
(C1S1200)

Lecture 10

Abstract types: Sets
Chapter 10

Announcements (1)

* Homework 3 available, due Tuesday at 11.59pm
— Practice with BSTs, generic functions, first-class functions, and abstract types

— Start early!
* Problems 1-4 can be done already
* Problems 5-8 can be done after class today

e Reading: Chapters 8, 9, and 10 of the lecture notes

* Please complete the Intro Survey (details on Ed)

Announcements (2)

 Midterm 1: Friday, Feb 14th
— Coverage: up to Wednesday, Feb 12th (Chapters 1-10)

— During lecture
Last names: A-Z Meyerson Hall B1

— 60 minutes; closed book, 1 sheet handwritten (not ipad) notes

— Review Material
* old exams on the web site (“schedule” tab)

— Review Session
* Wednesday, Feb 12, 7:00-9:00pm, Towne 100 (will be recorded)
* Review Videos will be posted this weekend

Mathematical Sets

In math, we typically write sets like this:
@ {1,2,3,4} {true,false}{X)Y,Z}

with operations
SUT forunion and
SN T forintersection;

and write x €S for the predicate
“x is a member of the set S”

Set properties

Certain facts hold of set operations:

1.

W

© N O U

If x € Sthenx € (SUT) foranyothersetT.

If x € Tthenx € (SUT) forany other setS.

XE&Q (the empty set contains no elements)

X € {x} (the element x is in its singleton set)
SUT=TUS (union is commutative)
(SUT)UV=sU((TUV) (union is associative)
SUS=S (union is idempotent)
SU@=sS (@ is the “right unit” of union)

A Set is an Abstract Type

An abstract type is defined by its interface and its
properties, not its representation

Interface: defines the type and operations
— There is a type of sets
— There is an empty set
— There is a way to add elements to make a bigger set
— There is a way to list all elements in a set concrete representation
— Thereis a way to test membership ~ memms e e ———

abstract view
Properties: define how the operations interact with
each other

pu— ==
— Elements that were added can be found in the set
— Adding an element a second time doesn’t change the listing of elements
— Adding elements in a different order doesn’t change the listing of -5 -
elements @
When we use a set, we can forget about the - -

representation!

This is abstraction!!

OCaml directly supports the declaration of abstract types via
signatures

The name of the signature

Set Signature

SN

The s1g keyword indicates

"

type 'a set <«

Y / an interface declaration
module type SET = sig

Type declaration has no

val empty 'a
val add 'a
val member :'a
val equals 'a
val set_of_list 'a

end “\\\\\\\\\x

“right-hand side” —its
representation is abstract!

set

-> 'a set -> 'a set
-> 'a set -> bool

set -> 'a set -> bool
list -> 'a set

SN

The interface members are the (only!)
means of manipulating the set type.

Signature (a.k.a. interface): defines operations on the type

Math notation vs. Code

1) ~ empty : 'a set
{x} ~ add x empty : 'a set
{x}US ~ add x s . 'a set
XES ~ member x s : bool

U yr=fytU{x ~ equals
(add x (add y empty))

(add y (add x empty))
Examples of corresponding

notions in math vs. OCaml : bool

Implementing sets

There are many ways to implement sets

— lists, trees, arrays, etc.

— each of these could be a suitable representation type
How do we choose which implementation?

— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’?
— How big can the sets be?

Many implementations are of the flavor
“asetis a ... with some invariants”

— A set s a list with no repeated elements.
— Asetis a tree with no repeated elements
— Asetis a binary search tree

How do we preserve the invariants of the implementation?

Invariant: a property that
remains unchanged when

a specified transformation is
applied.

A module implements an interface

* Animplementation of the set interface will look like this:

Name of the module

Signature that it implements

/ The struct keyword indicates

d &« a module implementation

module BSTSet : SET = struc
E* implementations of type and operations *)

ena

Implement the BSTSet Module

module BSTSet : SET = struct

Module must define (give a
type 'a tree =

concrete representation to) the
| Empty / type declared in the signature

| Node of 'a tree * 'a * 'a t
* The implementation must include everything

type 'a set = 'a tree promised by the interface

* It can contain more functions and type
let empty : "a set = Empty definitions (e.g., auxiliary or helper functions)
/ but those cannot be used outside the module

member, etc. *) match the signature

(* implementations of add, }/ * The types of the implementations must

end

Abstract vs. Concrete BSTSet

concrete representation

®
©
®

module BSTSet : SET = struct
type 'a tree = ..
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set =
... (* can treat s as a tree *)

end
_____________ -
I_rnodule type SET = sig I
I type 'a set
=== val empty : 'a set | E—
val add : 'a -> 'a set -> 'a set |
| end

(* A client of the BSTSet module *)
(* Cannot treat a set as a tree *)
;5 open BSTSet

let s : int set
= add @ (Cadd 3 (add 1 empty))

A Different Implementation

module ULSet : SET =
struct

_ A different definition for
type 'a set = 'a list <« the type set

let empty : 'a set = []

end

Abstract vs. Concrete ULSet

S 0::3::1::[]

concrete representation

®
©
®

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =
X::s (* can treat s as a list *)

end
_____________ -
I_rnodule type SET = sig I
I type 'a set
=== val empty : 'a set | E—
val add : 'a -> 'a set -> 'a set |
| end

(* A client of the ULSet module *)
(* Cannot treat a set as a list *)
;5 open ULSet

let s : int set
= add_@ (add 3 (add 1 empty))

Client code doesn’t change!

See sets.ml

Testing (and using) sets

* Use “Open” to bring all names defined in the interface into scope

* Any names in the interface that were already in scope are shadowed

.+ open ULSet + Brings the type 'a set and
> values empty, add, and
member into scope

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1

let test () : bool = (member 3 sl)
;53 run_test "ULSet.member 3 sl1" test

let test () : bool = (member 4 s3)
;3 run_test "ULSet.member 4 s3" test

Testing (and using) sets

Alternatively, use the “dot” syntax:
ULSet.<member>

Note: Module names must be capitalized in OCaml

Useful when two modules define the same operations

let sl = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 sl

let test () : bool = (ULSet.member 3 sl1)
;3 run_test "ULSet.member 3 sl1" test

let test () : bool = (ULSet.member 4 s3)
;35 run_test "ULSet.member 4 s3" test

H
10: Does this code typecheck? 0
yes
0%
no
0%
|

H Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

module type SET = sig
type 'a set

val empty : 'a set
:'a -> 'a set -> 'a set

val add
end
module BSTSet : SET = struct
type 'a tree =
| Empty

| Node of "a tree * 'a * 'a tree
type 'a set = 'a tree

Does this code type check?

let empty : 'a set = Empty

end

;; open BSTSet
let sl

int set = add 1 empty

1. yes
2. o

Answer: yes

H
10: Does this code typecheck? 0
yes
0%
no
0%
|

H Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Does this code type check?

;; open BSTSet
let s1 = add 1 empty

1. yes end

module type SET = sig

type 'a set
val empty : 'a set
val add :'a -> 'a set -> 'a set
end
module BSTSet : SET = struct
type 'a tree =
| Empty

| Node of "a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

end

let il = begin match sl with
| Node (_,k,_) -> k
| Empty -> failwith “impossible”

2. no

Answer: no, add constructs a set, not a tree

H
10: Does this code typecheck? 0
yes
0%
no
0%
|

H Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

module type SET = sig
type 'a set

val empty : 'a set
:'a -> 'a set -> 'a set

val add
end
module BSTSet : SET = struct
type 'a tree =
| Empty

| Node of "a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..

Does this code type check?

el’l“Ci

;; open BSTSet

let s1 = add 1 empty
let 11 = size sl

1. yes
2. no

Answer: no, cannot access helper functions outside the module

Does this code type check?

module type SET = sig

type 'a set
val empty : 'a set
val add :'a -> 'a set -> 'a set
end
module BSTSet : SET = struct
type 'a tree =
| Empty

| Node of "a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

end

;; open BSTSet
let s1 : int set = Empty

1. yes
2. o

Answer: no, the Empty data

constructor is not

available outside the module

If a client module works correctly and starts with:

;; open ULSet

will it continue to work if we change that line to:

;; open BSTSet

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

Answer: yes (though performance may be different)

module type SET = sig

type 'a set

val empty : 'a set

val add :'a -> 'a set -> 'a set

val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of "a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

end

s it possible for a client to call member with a tree that is

not a BST?

1. yes
2. no

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

See sets.ml

Equality of Sets

* Note that the interface for our abstract sets includes:

val equals : 'a set -> 'a set -> bool

— This function defines what it means for two sets to be “equal”.

* Why can’t we just use OCaml’s built-in '="to compare?

— This generic, built-in equality operation = compares the structure of
its two inputs to see whether they are the same.

— BUT(!) two values with different structure may represent the same collection of elements.

 In ULSet:

These two values
3::0::1::[] Q::1::3::[1 arenotequalas

concrete representation concrete representation lists.

abstract view abstract view

@ @ @]_ These two values
‘[®@]' -[@ are equal as sets.

When defining an abstract type, you may need to define a
different notion of equality

— The built-in “structural equality” written as = may not be appropriate

— Be sure to use the ‘equals’ function when comparing, e.g., sets

— (Other generic operations, like < and > may also be affected.)

What Should You Test?

* Interface: defines operations on the type

. Properties: define how the operations interact

— Elements that were added can be found in the set
— Adding an element a second time doesn’t change the elements of a set
— Adding in a different order doesn’t change the elements of a set

Test the properties!

A property is a general statement about the behavior of the
interface: For any set S and any element X:

member x (add x s) = true

A (good) test case checks a specific instance of the property:

let sl = add 3 empty
let test () : bool = (member 3 sl1)
run_test "ULSet.member 3 sl1" test

))

Property-based Testing

1. Translate informal requirements into general statements about the interface.

Example: “Order doesn’t matter” becomes
For any set s and any elements X and y,

add x (add y s) equals add y (add x s)

2. Write tests for the “interesting” instances of the general statement.

Example. “interesting” choices:
Ss=empty, S=nonempty,
X=Y X<V
one or both of X, Y alreadyin S

Notes:

- one can’t (usually) exhaustively test all possibilities (too many!) so instead,
cover the “interesting” possibilities

- be careful with equality! ULSet.equals is not the same as =

