Programming Languages and Techniques (CIS1200)

Lecture 11

Abstract types: Sets

Chapter 10

Announcements (1)

- Homework 3 is due tomorrow at 11.59pm
 - Practice with BSTs, generic functions, first-class functions, and abstract types
- Reading: Chapters 8, 9, and 10 of the lecture notes

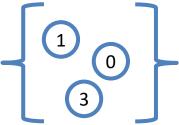
Announcements (2)

- Midterm 1: Friday, February 14th
 - Coverage: up to Wednesday, Feb 12th (Chapters 1-10)
 - During lecture
 Last names: A Z
 Meyerson Hall B1
 - 60 minutes; closed book, single-sided handwritten letter size notes allowed
 - Review Material
 - old exams on the web site ("schedule" tab)
 - Review Session
 - Wednesday, Feb 12, 7:00-9:00pm, Towne 100 (will be recorded)
 - Review Videos available on canvas

Review: Abstract types (e.g., set)

- An abstract type is defined by its *interface* and its *properties*, not its representation
- Interface: defines operations on the abstract type
 - There is an empty set
 - There is a way to add elements to a set to make a bigger set
 - There is a way to test membership
- Properties: define how the operations interact with each other
 - Elements that were added can be found in the set
 - Adding an element a second time doesn't change the elements of a set
 - Adding in a different order doesn't change the elements of a set
- Any concrete type that satisfies the interface and properties can implement a set
- Clients of an implementation can only access what is explicitly mentioned in the abstract type's interface

concrete representation ----- Interface ----abstract view



Set Interface

```
module type SET = sig
               type 'a set
               val empty
                               : 'a set
               val add
                               : 'a -> 'a set -> 'a set
               val member
                              : 'a -> 'a set -> bool
               val equals
                               : 'a set -> 'a set -> bool
            end
module UnorderedListSet : SET = struct
                                         module BSTSet : SET = struct
   type 'a set = 'a list
                                             type 'a tree =
                                               Empty
Node of 'a tree * 'a * 'a tree
        module OrderedListSet : SET = str
end
           type 'a set = 'a list
                                            type 'a set = 'a tree
                                             ...
        end
                                         end
```

Equality of Sets

When defining an abstract type, you may need to define an abstract notion of equality

- The built-in "structural equality" (written =) may not be appropriate for all implementations
- Clients of the abstract type should use the 'equals' function when comparing sets
- Other generic operations, like < and > may also be affected

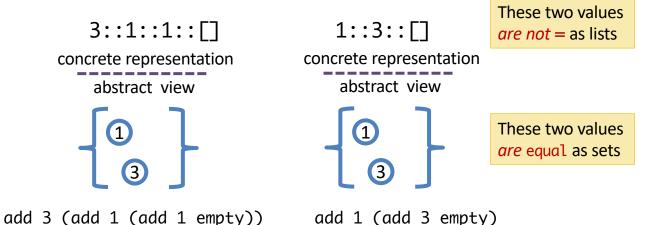
Equality of Sets

• The SET interface includes

val equals : 'a set -> 'a set -> bool

This function should return true when both sets contain same elements

- Can we use OCaml's built-in `=` to compare sets?
 - This generic, built-in equality operation = compares the *structure* of its two inputs to see whether they are the same
- With unordered lists, NO!



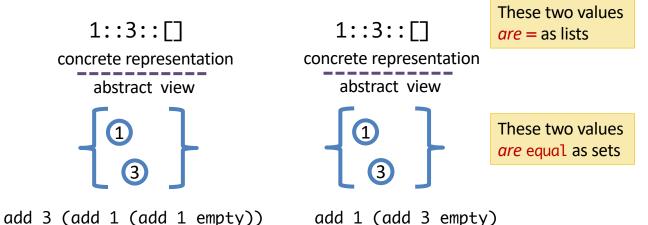
Equality of Sets

• The SET interface includes

val equals : 'a set -> 'a set -> bool

This function should return true when both sets contain same elements

- Can we use OCaml's built-in `=` to compare sets?
 - This generic, built-in equality operation = compares the *structure* of its two inputs to see whether they are the same
- With strictly ordered lists, YES!



Abstract Types

Abstract types: **BIG IDEA**

Hide the *concrete representation* of a type behind an *abstract interface* to preserve **representation invariants**

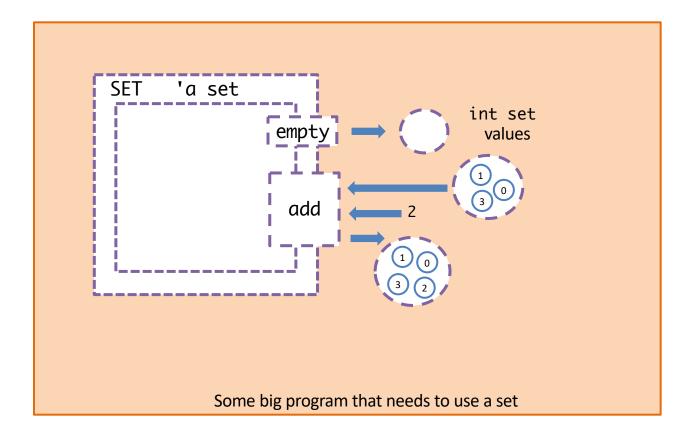
- Example representation invariants
 - Sets implemented as lists, which must be strictly ordered (no duplicates)
 - Sets implemented as binary tree, which must satisfy the BST invariant
- If the set type is abstract, and *all* operations preserve invariants, then invariants **must** hold for *all* sets in the program!
 - Example: if all sets implemented as lists are strictly ordered, then the `=` operation implements set equality
 - Example: if all sets implemented as trees satisfy the BST invariant, then the lookup function can *assume* that its input is a BST

Abstract types: **BIG IDEA**

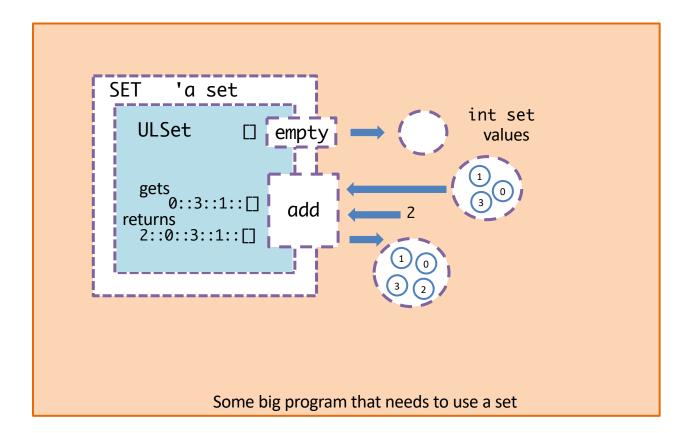
Hide the *concrete representation* of a type behind an *abstract interface* to preserve **representation invariants**

- An abstract interface **restricts** how other parts of the program can interact with the data
 - Type checking ensures that the **only** way to create a set is with the operations in the interface (empty, add, etc.)
 - Type checking ensures that clients cannot depend on whether the sets are implemented as trees or lists
- Benefits
 - Safety: The other parts of the program can't violate invariants, which would cause bugs
 - Modularity: It is possible to change the implementation without changing the rest of the program

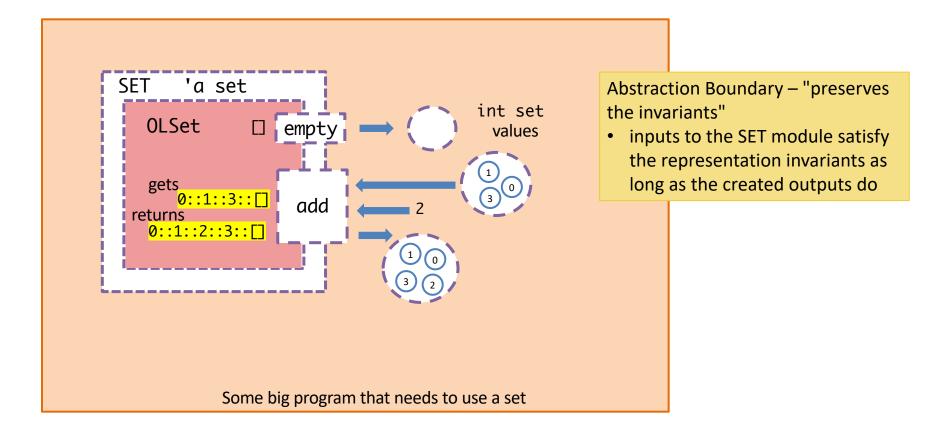
Encapsulation and Modularity



Implementation



Implementation



11: Given add of type 'a -> 'a set -> 'a set, what does it mean to say that this function "preserves invariants" ?

The output of this function is always a valid set, no matter what inputs are provided.	004
	0%
If the input set is valid, then the output of this function is always a valid set.	
	0%
If the input set is valid, then the output of this function may or may not be a valid set.	
	0%
The output of this function is never a valid set, no matter what inputs are provided.	
	0%
None of the above	
	0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Given "add" of type 'a -> 'a set -> 'a set, what does it mean to say that this function "preserves invariants" ?

- 1. The output of this function is always a valid set, no matter what inputs are provided.
- 2. If the input set is valid, then the output of this function is always a valid set.
- 3. If the input set is valid, then the output of this function may or may not be a valid set.
- 4. The output of this function is never a valid set, no matter what inputs are provided.
- 5. None of the above

In the module OLSet, does this function "preserve invariants" ?

1. yes

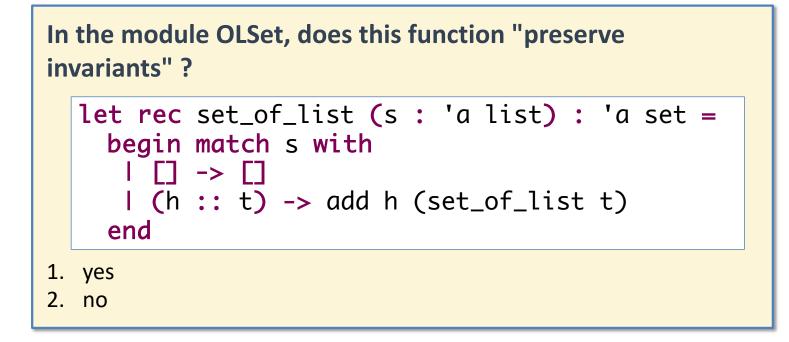
2. no

In the module OLSet, does this function "preserve invariants" ?

yes
 no

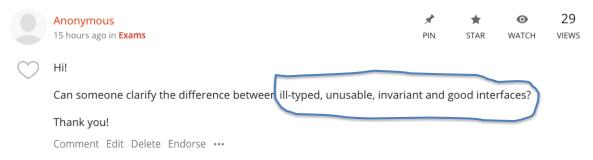
In the module OLSet, does this function "preserve invariants" ?

yes
 no



What is a good signature?

Fall 2022 Question 3 #324



1 Answer

 \checkmark

Ill-typed: The type signature for one or more functions has an incorrect type such as trying to add an int and a string together to produce an int

Unusable: The provided type declaration would render an implementation unusable. For example, in HW3, not having the definition of an empty set or the set_of_list function would render our interface unusable since we'd never be able to create a set type!

Good Signature: Set

```
module type SET = sig
  type 'a set
  val empty : 'a set
  val add : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set
end
```

Unusable Signature: Set

<pre>module type SET = sig type 'a set</pre>	Type is abstract. All we know about it is what is in the signature. All sets must be constructed from operations listed here.
val member : 'a ->	'a set -> 'a set 'a set -> bool -> 'a set -> bool
end	

let s = ???
Clients have no way of constructing a map
Using [] doesn't type check

Good Signature: Set (Again)

```
module type SET = sig
  type 'a set
  val empty : 'a set
  val add : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set
end
```

Unsafe Signature: Set

```
module type SET = sig
type 'a set = 'a list
val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool
val equals : 'a set -> 'a set -> bool
val set_of_list : 'a list -> 'a set
end
```

```
let s = [ "uno" ; "dos" ; "tres" ] in
member s "dos" ?
```

Clients can call module code with sets that don't satisfy the invariant

Good Signature: Set (Again)

```
module type SET = sig
  type 'a set
  val empty : 'a set
  val add : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set
end
```

Unsafe Signature: Set

```
module type SET = sig
  type 'a set
  val empty : 'a set
  val add : 'a -> 'a set -> 'a set
  val member : 'a -> 'a list -> bool
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set
end
```

```
let s = [ "uno" ; "dos" ; "tres" ] in
member s "dos" ?
```

Clients can call module code with sets that don't satisfy the invariant

Good Signature: Set (Again)

```
module type SET = sig
  type 'a set
  val empty : 'a set
  val add : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set
end
```

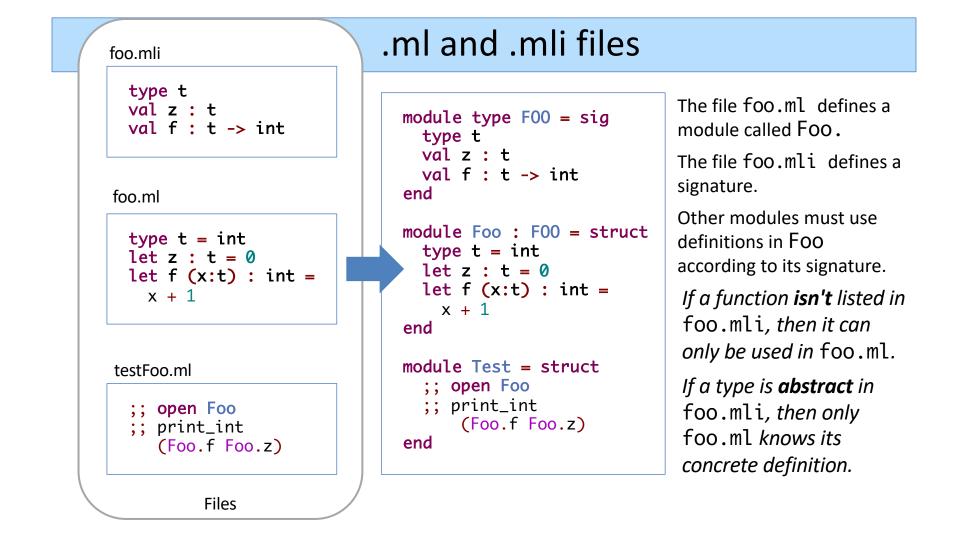
Unimplementable Signature: Set

```
module type SET = sig
type 'a set = 'a * 'a
val empty : set
val add : 'a -> 'b set -> 'a set
val member : 'a -> 'a set -> bool
val equals : 'a set -> 'a set -> bool
val set_of_list : 'a list -> 'a set
end
```

1. Wrong implementation type --- operations won't satisfy properties

- 2. Missing type arguments (empty) --- doesn't compile!
- 3. Type too generic (add)

Files, Signatures and Modules



Property-Based Testing

Testing Styles

- "From the inside"...
 - If we know the concrete representation of our data, we can test the effect of each operation on that representation
 - Necessary for checking that operations preserve invariants
- "From the outside"...
 - If the concrete representation is hidden, this doesn't work!
 - We need a different way to think about testing

What Should We Test?

- Interface: Names and types of operations on the abstract type
- Properties: How the operations behave and interact
 - "Elements that were added can be found by lookup"
 - "Adding an element a second time doesn't change the elements of a set
 - "Adding elements in a different order doesn't change the outcome of later operations"

A *property* is a general statement about the behavior of functions in the interface.

For any set s and any element x, member x (add x s) = true

A good test case *checks a specific instance* of the property: let test () : bool = (member 3 (add 3 empty))
;; run_test "member 3 (add 3 empty)" test

Test the properties!

Property-based Testing

1. Translate informal requirements into general statements about the interface.

Example: "Order doesn't matter" becomes For any set s and any elements x and y, add x (add y s) "equals" add y (add x s)

2. Write tests for the "interesting" instances of the general statement.

Example "interesting" choices

• s is empty vs. s is nonempty

• x and/or y already in s vs. x and y different from what's in s

Notes:

- You usually can't test all possibilities (too many!), so just try to cover the "interesting" choices
- Be careful with equality! ULSet.equals and BSTSet.equals are not the same as "="

Finite Maps

A case study on abstract interfaces and concrete implementations

Motivating Scenario

- Suppose you were writing a course-management system and needed to look up the lab section for a student given the student's PennKey...
 - Students might add/drop the course
 - Students might switch lab sections
 - Students should be in only one lab section
- How would you do it? What data structure would you use?

Key/Value store

Кеу	Value
"stephanie"	15
"mitch"	05
"ezaan"	10
"likat"	15

- Each key is associated with a value.
 - No two keys are identical
 - Values can be repeated
- Given the key "stephanie", we want to find / lookup the value 15

Finite Maps

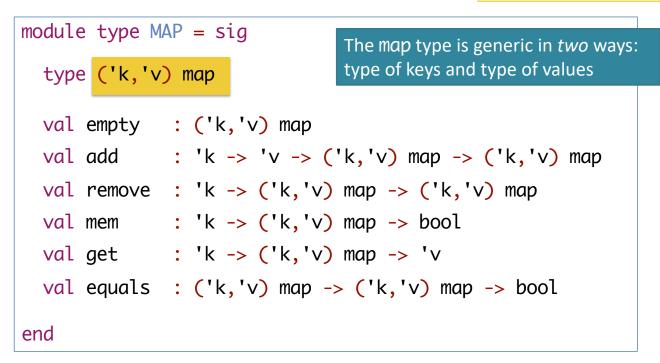
Design Process Step 1: Understand the problem

- A *finite map* (a.k.a. *dictionary*) is a collection of *entries* from distinct *keys* to *values*.
 - Operations to *add* a new entry, *test* for key membership, *get* the value bound to a
 particular key, *list* all entries stored in the map
- Example: we might use a finite map to look up the lab section of a CIS 1200 student
- Like sets, *finite maps* appear in many settings:
 - domain names to IP addresses
 - words
 to their definitions (a dictionary)
 - user names to passwords

— ...

Signature: Finite Map

Design Process Step 2: specify the interface



Properties of Finite Maps

For any finite map m, key k, and value v:

- 1. get k (add k v m) = v
- 2. If k1 $\langle k_2 \rangle$ k2 then get k1 (add k2 v2 (add k1 v1 m)) = v1
- 3. If mem k m = true then there is a v such that get k m = v
- 4. If mem k m = false then get k m = v fails
- 5. mem k (add k v m) = true

(among others...)

Design Process Step 3: write test cases

Tests for Finite Map abstract type

```
Design Process Step 3:
;; open Assert
                                                           write test cases
(* Specifying the properties of the MAP abstract type via test cases. *)
                                                              Using an anonymous
(* A simple map with one element. *)
                                                              function avoids making up a
let m1 : (int,string) map = add 1 "uno" empty
                                                              (redundant) function name
                                                              for the test
(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno")
(* find for value that does not exist in the map? *)
;; run failing test "find 2 m1" (fun () -> (get 2 m1) = "dos" )
let m2 : (int, string) map = add 1 "un" m1
(* find after redefining value, should be new value *)
;; run test "find 1 m2" (fun () -> (get 1 m2) = "un")
(* test membership *)
;; run test "mem test" (fun () ->
        mem 1 (add 2 "dos" (add 1 "uno" empty)))
```

Finite Map Demo

Implementing the module

finiteMap.ml

Implementation: Ordered Lists

*) *) *) *)

```
module Assoc : MAP = struct
  (* Represent a finite map as a list of pairs.
  (* Representation invariant:
    (* - no duplicate keys (helps get, remove)
    (* - keys are sorted (helps equals, get)
    type ('k,'v) map = ('k * 'v) list
    let empty : ('k,'v) map = []
    let rec mem (key:'k) (m : ('k,'v) map) : bool =
        begin match m with
    | [] -> false
    | (k,v)::rest ->
        (key >= k) &&
        ((key = k) || (mem key rest))
    end
```

Design Process Step 4: implement it!

Implementation: Ordered Lists

```
let rec get (key:'k) (m : ('k,'v) map) : 'v =
  begin match m with
  | [ ] -> failwith "key not found"
  | (k,v)::rest ->
    if key < k then failwith "key not found"
    else if key = k then v
    else get key rest
  end
let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
  begin match m with
  | [] -> []
  | (k,v)::rest ->
    if key < k then m
    else if key = k then rest
    else (k,v)::remove key rest
  end
```

Summary: Abstract Types

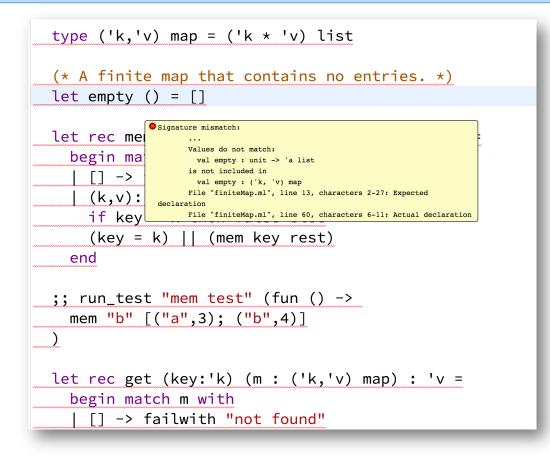
- Different programming languages support different ways of defining abstract types
- At a minimum, this means providing:
 - A way to specify (write down) an interface
 - A means of hiding implementation details (*encapsulation*)
- In OCaml:
 - Interfaces are specified using a *signature* or *interface*
 - Encapsulation: the interface can *omit* information
 - type definitions
 - names of auxiliary functions
 - Clients cannot mention values or types not named in the interface

Typechecking

How does OCaml* typecheck your code?

*Historical aside: the algorithm we are about to see is known as the Damas-Hindley-Milner type inference algorithm. Turing Award winner Robin Milner was, among other things, the inventor of "ML" (for "meta language"), from which OCaml gets its "ml".

OCaml Typechecking Errors



Typechecking

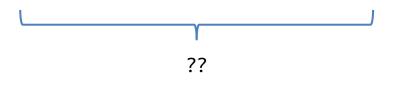
How do we determine the type of an expression?

- 1. Recursively determine the types of *all* sub-expressions
 - Constants have "obvious" types
 - 3 : int "foo" : string true : bool
 - Identifiers may have type annotations
 - let and function arguments
 - Module signatures/interfaces
- 2. Expressions that *construct* structured values have compound types built from the types of sub-expressions

(3, "foo") : int * string
(fun (x:int) -> x + 1) : int -> int
Node(Empty, (3, "foo"), Empty) : (int * string) tree

To typecheck a function:

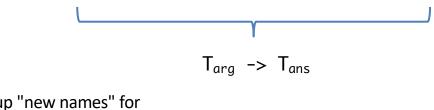
fun (x:int)
$$\rightarrow$$
 x + x



CIS120

To typecheck a function:

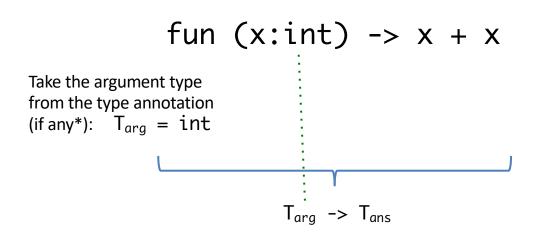
fun (x:int) -> x + x



Make up "new names" for the input (argument) and output (answer) types.

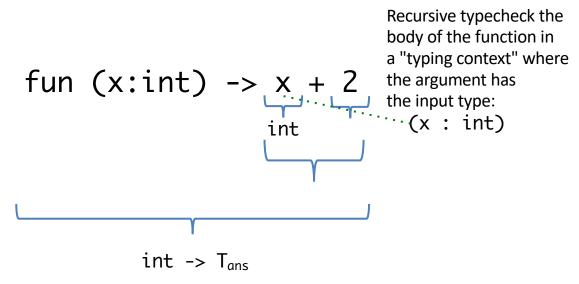
CIS120

To typecheck a function:



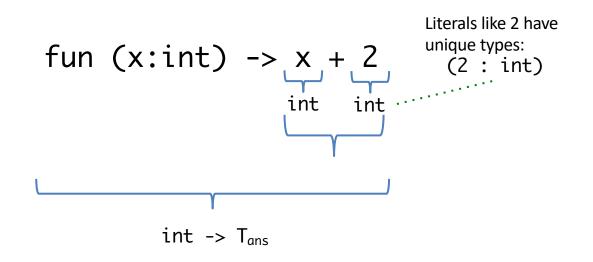
*If there is no annotation, just use the "fresh" name...

To typecheck a function:

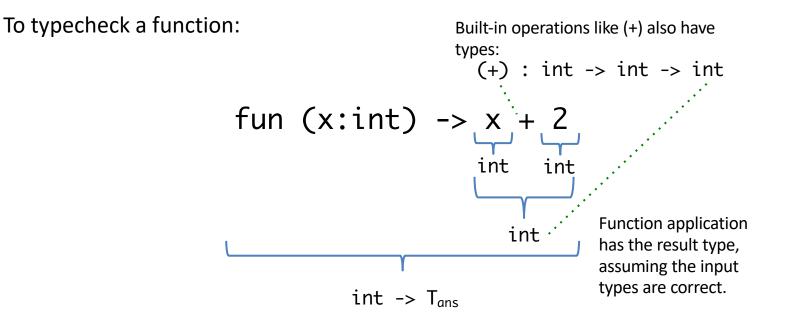


CIS120

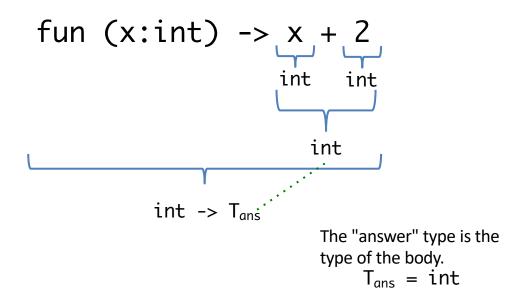
To typecheck a function:



CIS120

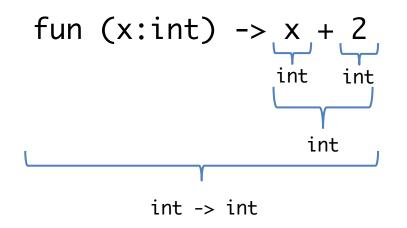


To typecheck a function:



CIS120

To typecheck a function:



CIS120

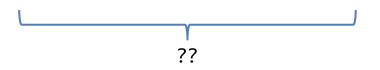
- 3. The type of a function-application expression is obtained as the result from the function type:

((fun (x:int) (y:bool) -> y) 3) : ??

3. The type of a function-application expression is obtained as the result from the function type:

-	Given a function	f	: T _{arg} ->	T _{ans}
_	and an argument	е	: T _{arg}	of the input type
—	the application	(f e)	: T _{ans}	has the answer type

((fun (x:int) (y:bool) -> y) 3) : ??



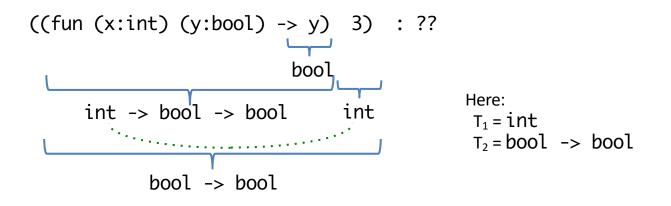
—	Given a function	f	: T _{arg}	. _g −> T _{ans}
_	and an argument	е	: T _{arg}	ng of the input type
_	the application	(f e)	: T _{ans}	has the answer type

—	Given a function	f	: T _{arg} ->	T _{ans}
_	and an argument	е	: T _{arg}	of the input type
—	the application	(f e)	: T _{ans}	has the answer type

-	Given a function	f	: T _{arg} ->	T _{ans}
_	and an argument	е	: T _{arg}	of the input type
_	the application	(f e)	: T _{ans}	has the answer type

—	Given a function	f	: $T_{arg} \rightarrow$	T _{ans}
_	and an argument	е	: T _{arg}	of the input type
_	the application	(f e)	: T _{ans}	has the answer type

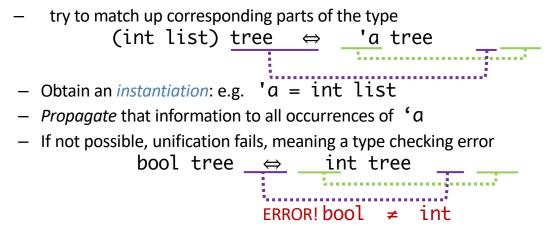
—	Given a function	f	: T _{arg} ->	T _{ans}
_	and an argument	е	: T _{arg}	of the input type
—	the application	(f e)	: T _{ans}	has the answer type



- What about generics? i.e., what if $f:'a \rightarrow a$? ٠
- For generic types we *unify* ٠
 - _

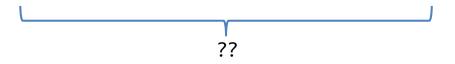
Can *"match up"* T_1 and U_1 to obtain information about type parameters in T_1 and U_1 based on their usage

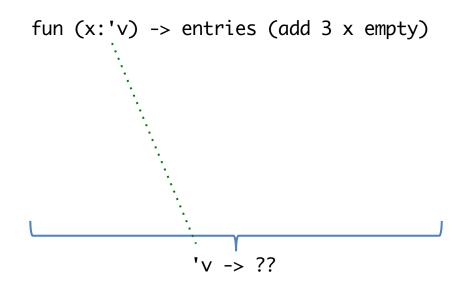
Unification:

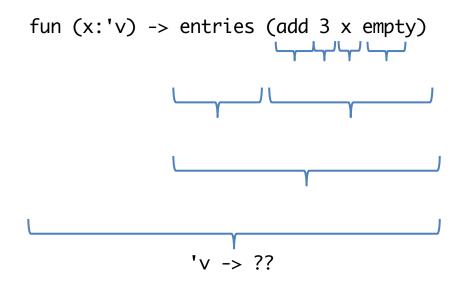


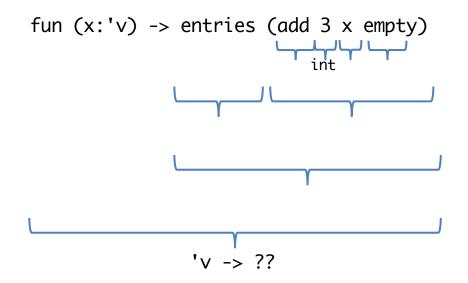
e	empty	:	('k, 'v) map
C	add	:	'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
e	entries	:	('k, 'v) map -> ('k * 'v) list

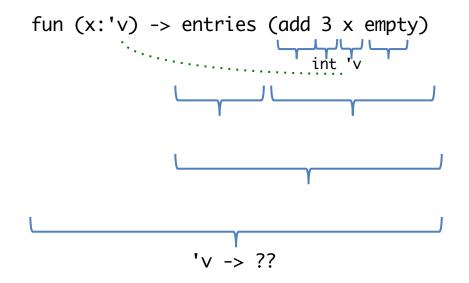
fun (x:'v) -> entries (add 3 x empty)

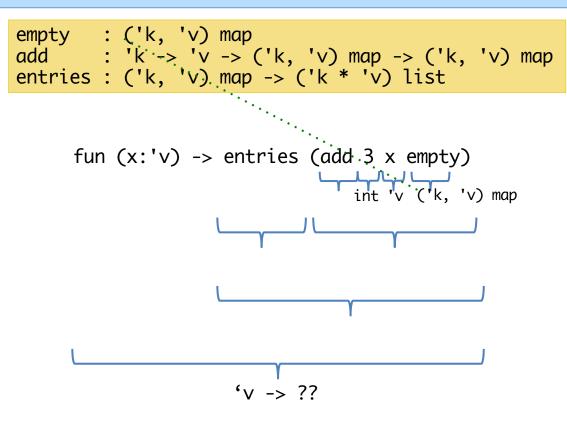


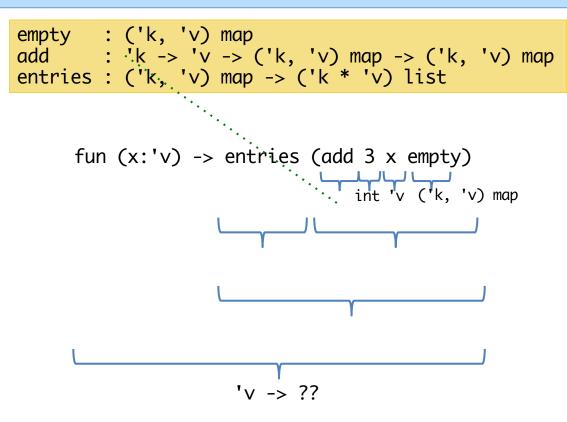


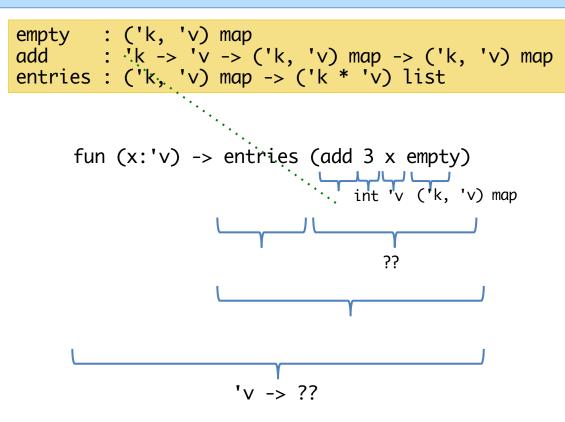


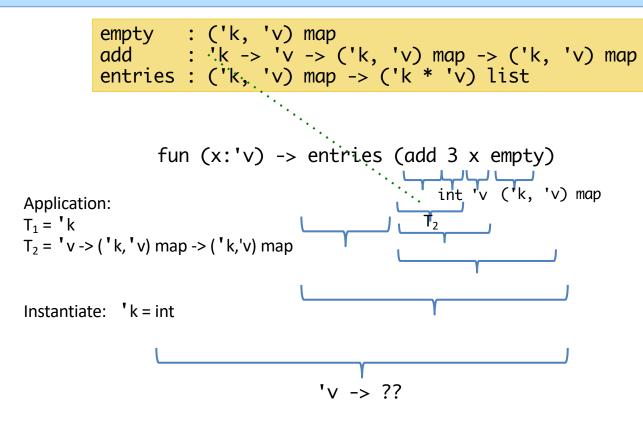


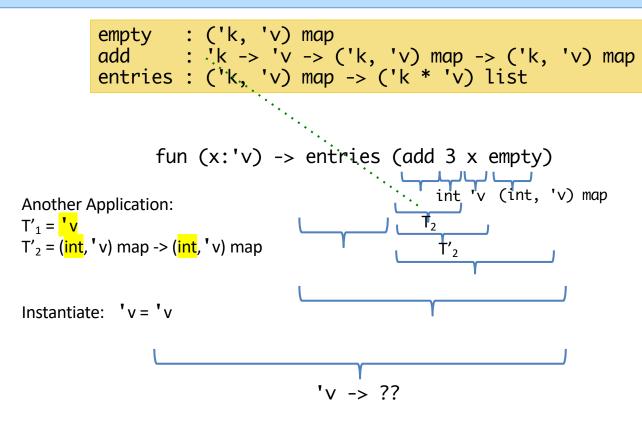


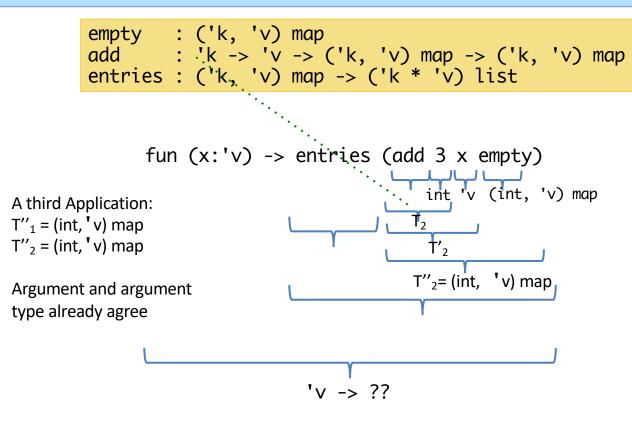


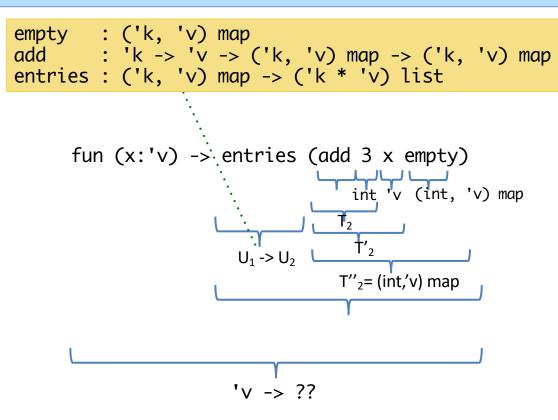


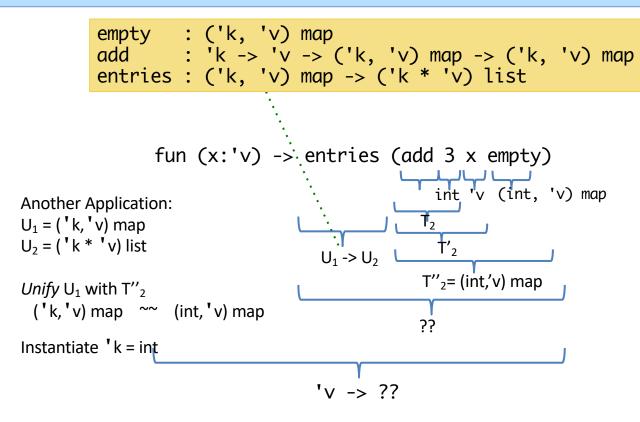


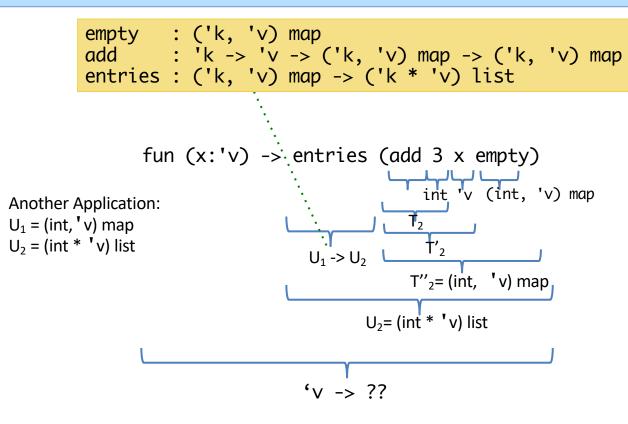


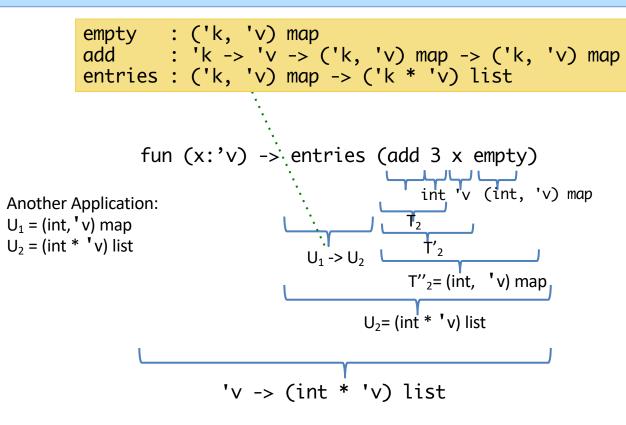












Ill-typed Expressions?

• An expression is ill-typed if, during this type checking process, inconsistent constraints are encountered:

empty : ('k, 'v) map add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map entries : ('k, 'v) map -> ('k * 'v) list

add 3 true (add "foo" false empty)

Error: found int but expected string

