
Programming Languages 
and Techniques

(CIS1200)

Lecture 11

Abstract types: Sets
Chapter 10



Announcements (1)

• Homework 3 is due tomorrow at 11.59pm
– Practice with BSTs, generic functions, first-class functions, and abstract types

• Reading: Chapters 8, 9, and 10 of the lecture notes



Announcements (2)
• Midterm 1:  Friday, February 14th
– Coverage: up to Wednesday, Feb 12th (Chapters 1-10)
– During lecture  

Last names:    A – Z      Meyerson Hall B1

– 60 minutes; closed book, single-sided handwritten letter size notes 
allowed

– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• Wednesday, Feb 12, 7:00-9:00pm, Towne 100 (will be recorded)
• Review Videos available on canvas



Review: Abstract types  (e.g., set)
• An abstract type is defined by its interface and its properties, not its 

representation

• Interface: defines operations on the abstract type
– There is an empty set
– There is a way to add elements to a set to make a bigger set
– There is a way to test membership

• Properties: define how the operations interact with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a set
– Adding in a different order doesn’t change the elements of a set

• Any concrete type that satisfies the interface and properties can 
implement a set

• Clients of an implementation can only access what is explicitly 
mentioned in the abstract type’s interface

1

3

0

abstract  view

?
concrete representation

Interface



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool

end

Set Interface

module UnorderedListSet : SET = struct

 type 'a set = 'a list
 …
end module OrderedListSet : SET = struct

 type 'a set = 'a list
 …
end

module BSTSet : SET = struct

 type 'a tree =
     | Empty
     | Node of 'a tree * 'a * 'a tree

   type 'a set = 'a tree
 …
end



Equality of Sets



When defining an abstract type, you may need to define an 
abstract notion of equality

– The built-in “structural equality” (written =) may not be appropriate  
for all implementations

– Clients of the abstract type should use the ‘equals’ function when 
comparing sets

– Other generic operations, like < and > may also be affected

Abstract types need their own equality



Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in  `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With unordered lists, NO!

val equals : 'a set -> 'a set -> bool

1

3

abstract  view
concrete representation

3::1::1::[]

1

3

abstract  view
concrete representation

1::3::[]

These two values 
are equal as sets

These two values 
are not = as lists

This function should return 
true when both sets 
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))



Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in  `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With strictly ordered lists, YES!

val equals : 'a set -> 'a set -> bool

1

3

abstract  view
concrete representation

1::3::[]

1

3

abstract  view
concrete representation

1::3::[]

These two values 
are equal as sets

These two values 
are = as lists

This function should return 
true when both sets 
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))



Abstract Types



Abstract types: BIG IDEA

• Example representation invariants
– Sets implemented as lists, which must be strictly ordered (no duplicates)
– Sets implemented as binary tree, which must satisfy the BST invariant 

• If the set type is abstract, and all operations preserve invariants, then 
invariants must hold for all sets in the program!
– Example: if all sets implemented as lists are strictly ordered, then the `=` 

operation implements set equality
– Example: if all sets implemented as trees satisfy the BST invariant, then the 

lookup function can assume that its input is a BST

Hide the concrete representation of a type behind an 
abstract interface to preserve representation invariants 



Abstract types: BIG IDEA

• An abstract interface restricts how other parts of the program can interact 
with the data
– Type checking ensures that the only way to create a set is with the operations in 

the interface (empty, add, etc.)
– Type checking ensures that clients cannot depend on whether the sets are 

implemented as trees or lists
• Benefits

– Safety:   The other parts of the program can’t violate invariants, which would 
cause bugs

– Modularity:  It is possible to change the implementation without changing the 
rest of the program

Hide the concrete representation of a type behind an 
abstract interface to preserve representation invariants 



Encapsulation and Modularity

SET   'a set

empty

add

int set 
values

1

3
0

2

1

3

0

2

Some big program that needs to use a set



Implementation

SET   'a set
int set 

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
2::0::3::1::[]

0::3::1::[]

ULSet []

gets

returns



Implementation

SET   'a set
int set 

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
0::1::2::3::[]

0::1::3::[]

OLSet []

Abstraction Boundary – "preserves 
the invariants"
• inputs to the SET module satisfy 

the representation invariants as 
long as the created outputs dogets

returns





Given "add" of type 'a -> 'a set -> 'a set, what does it mean 
to say that this function "preserves invariants" ?

1. The output of this function is always a valid set, no matter 
what inputs are provided.

2. If the input set is valid, then the output of this function is 
always a valid set.

3. If the input set is valid, then the output of this function 
may or may not be a valid set.

4. The output of this function is never a valid set, no matter 
what inputs are provided.

5. None of the above

Answer: 2



In the module OLSet, does this function "preserve 
invariants" ?

1. yes
2. no

Answer: 2

let add (x : 'a) (s : 'a set) : 'a set 
   = x :: s



In the module OLSet, does this function "preserve 
invariants" ?

1. yes
2. no

Answer: 1

let list_of_set (s : 'a set) : 'a list 
   = s



In the module OLSet, does this function "preserve 
invariants" ?

1. yes
2. no

Answer: 2

let set_of_list (s : 'a list) : 'a set 
   = s



In the module OLSet, does this function "preserve 
invariants" ?

1. yes
2. no

Answer: 1

let rec set_of_list (s : 'a list) : 'a set = 
  begin match s with 
   | [] -> []
   | (h :: t) -> add h (set_of_list t)
  end



What is a good signature?



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Good Signature: Set



module type SET = sig

 type 'a set

 
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   

end

Unusable Signature: Set

Type is abstract. All we know about it 
is what is in the signature. All sets 
must be constructed from operations
listed here.  

let s = ??? 
Clients have no way of constructing a map
Using [] doesn't type check



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Good Signature: Set (Again)



module type SET = sig

 type 'a set = 'a list

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Unsafe Signature: Set

Invariant: elements are sorted 
in the list, no duplicates

let s = [ "uno" ; "dos" ; "tres" ] in 
member s "dos" ?

Clients can call module code with sets that don't 
satisfy the invariant



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Good Signature: Set (Again)



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a list -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Unsafe Signature: Set

let s = [ "uno" ; "dos" ; "tres" ] in 
member s "dos" ?

Clients can call module code with sets that don't 
satisfy the invariant



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Good Signature: Set (Again)



module type SET = sig

 type 'a set = 'a * 'a 

 val empty       : set
 val add         : 'a -> 'b set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Unimplementable Signature: Set

1. Wrong implementation type --- operations won't satisfy properties
2. Missing type arguments (empty) --- doesn't compile!
3. Type too generic (add)



Files, Signatures and Modules



.ml and .mli files

module type FOO = sig
  type t
  val z : t
  val f : t -> int
end

module Foo : FOO = struct
  type t = int
  let z : t = 0
  let f (x:t) : int = 
    x + 1
end

module Test = struct
  ;; open Foo
  ;; print_int 
      (Foo.f Foo.z)
end

type t
val z : t
val f : t -> int

foo.mli

type t = int
let z : t = 0
let f (x:t) : int = 
  x + 1

foo.ml

;; open Foo
;; print_int 
   (Foo.f Foo.z)

testFoo.ml

Files

The file foo.ml defines a 
module called Foo.
The file foo.mli defines a 
signature. 
Other modules must use 
definitions in Foo 
according to its signature.

If a function isn't listed in 
foo.mli, then it can 
only be used in foo.ml.
If a type is abstract in 
foo.mli, then only 
foo.ml knows its 
concrete definition. 



Property-Based Testing



Testing Styles
• “From the inside”…

– If we know the concrete representation of our data, we can test the effect of 
each operation on that representation

– Necessary for checking that operations preserve invariants 

• “From the outside”…
– If the concrete representation is hidden, this doesn’t work!
– We need a different way to think about testing



What Should We Test?
• Interface: Names and types of operations on the abstract type
• Properties: How the operations behave and interact 

– “Elements that were added can be found by lookup”
– “Adding an element a second time doesn’t change the elements of a set
– “Adding elements in a different order doesn’t change the outcome of later 

operations”

Test the properties!

A property is a general statement about the behavior of functions in the 
interface.   
            For any set s and any element x, member x (add x s) = true

A good test case checks a specific instance of the property: 
   let test () : bool = (member 3 (add 3 empty))
   ;; run_test "member 3 (add 3 empty)" test



Property-based Testing
1. Translate informal requirements into general statements about the interface.

2. Write tests for the “interesting” instances of the general statement.

Notes: 
• You usually can't test all possibilities (too many!), so just try to cover the “interesting” choices
• Be careful with equality! ULSet.equals and BSTSet.equals are not the same as "="

Example:  “Order doesn’t matter” becomes
            For any set s and any elements x and y,

  add x (add y s) "equals" add y (add x s)

Example “interesting” choices
• s is empty   vs.   s is nonempty
• x = y    vs.   x <> y
• x and/or y already in s vs.   x and y different from what’s in s 



Finite Maps

A case study on abstract interfaces 
and concrete implementations



Motivating Scenario
• Suppose you were writing a course-management system and needed to 

look up the lab section for a student given the student’s PennKey…
– Students might add/drop the course
– Students might switch lab sections
– Students should be in only one lab section

• How would you do it? What data structure would you use?



Key/Value store

• Each key is associated with a value.
– No two keys are identical
– Values can be repeated

• Given the key “stephanie”, we want to find / lookup the value 
15

Key Value

“stephanie” 15
“mitch” 05
“ezaan” 10

“likat” 15
… …



Finite Maps
• A finite map (a.k.a. dictionary) is a collection of entries from distinct keys to values.

– Operations to add a new entry, test for key membership, get the value bound to a 
particular key, list all entries stored in the map

• Example: we might use a finite map to look up the lab section of a CIS 1200 student

• Like sets,  finite maps appear in many settings:
– domain names to IP addresses
– words   to their definitions (a dictionary)
– user names  to passwords
– …

Design Process Step 1:
Understand the problem



Signature: Finite Map

module type MAP = sig
  
  type ('k,'v) map
              
  val empty   : ('k,'v) map
  val add     : 'k -> 'v -> ('k,'v) map -> ('k,'v) map  
  val remove  : 'k -> ('k,'v) map -> ('k,'v) map
  val mem     : 'k -> ('k,'v) map -> bool
  val get     : 'k -> ('k,'v) map -> 'v    
  val equals  : ('k,'v) map -> ('k,'v) map -> bool    

end

The map type is generic in two ways: 
type of keys and type of values

Design Process Step 2:
specify the interface



Properties of Finite Maps
For any finite map m, key k, and value v:
1.  get k (add k v m) = v
2. If k1 <> k2 then

get k1 (add k2 v2 (add k1 v1 m)) = v1
3. If   mem k m = true   then 

     there is a v such that      get k m = v
4. If  mem k m = false then 

     get k m = v     fails
5.  mem k (add k v m) = true 

(among others…)

Design Process Step 3:
write test cases



Tests for Finite Map abstract type
;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno") 

(* find for value that does not exist in the map? *)
;; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos" )   

let m2 : (int, string) map = add 1 "un" m1

(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")

(* test membership *)
;; run_test "mem test" (fun () -> 
  mem 1 (add 2 "dos" (add 1 "uno" empty)))

Design Process Step 3:
write test cases

Using an  anonymous 
function avoids making up a 
(redundant) function name 
for the test



Finite Map Demo

Implementing the module

finiteMap.ml



Implementation: Ordered Lists
module Assoc : MAP = struct
  (* Represent a finite map as a list of pairs.      *)
  (* Representation invariant:                       *)
  (*   - no duplicate keys (helps get, remove)       *) 
  (*   - keys are sorted (helps equals, get)         *) 
 

  type ('k,'v) map = ('k * 'v) list
  
  let empty : ('k,'v) map = []
      
  let rec mem (key:'k) (m : ('k,'v) map) : bool =
    begin match m with
 | [] -> false
 | (k,v)::rest ->
   (key >= k) &&
      ((key = k) || (mem key rest))
    end
      
  

Design Process Step 4:
implement it!



Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =

    begin match m with
    | [] -> failwith "key not found"
    | (k,v)::rest ->
      if key < k then failwith "key not found"
      else if key = k then v
      else get key rest
    end
      
  let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
    begin match m with
    | [] -> []
    | (k,v)::rest ->
      if key < k then m
      else if key = k then rest
      else (k,v)::remove key rest
    end
      
  



Summary: Abstract Types
• Different programming languages support different ways of defining abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation: the interface can omit information

• type definitions
• names of auxiliary functions

– Clients cannot mention values or types not named in the interface



Typechecking

How does OCaml* typecheck your code?

*Historical aside:  the algorithm we are about to see is known as the Damas-Hindley-Milner
type inference algorithm.  Turing Award winner Robin Milner was, among other things,
the inventor of "ML" (for "meta language"), from which OCaml  gets its "ml".



OCaml Typechecking Errors

53



Typechecking
How do we determine the type of an expression?

1. Recursively determine the types of all sub-expressions
– Constants have “obvious” types

        3 : int     “foo” : string      true : bool
– Identifiers may have type annotations

• let and function arguments
• Module signatures/interfaces

2. Expressions that construct structured values have compound types built from the 
types of sub-expressions
    (3, “foo”)                     : int * string
  (fun (x:int) -> x + 1)         : int -> int
  Node(Empty, (3, “foo”), Empty) : (int * string) tree



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

??



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

Targ -> Tans
Make up "new names" for
the input (argument) and 
output (answer) types.



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

Targ -> Tans

Take the argument type
from the type annotation
(if any*):     Targ = int 

*If there is no annotation, just use the "fresh" name…



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

Recursive typecheck the 
body of the function in 
a "typing context" where
the argument has 
the input type:
  (x : int)int



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

Literals like 2 have
unique types:
  (2 : int)

int int



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

Built-in operations like (+) also have
types:
  (+) : int -> int -> int

Function application
has the result type,
assuming the input
types are correct. 



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

The "answer" type is the
type of the body.
    Tans = int 



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> int

int int

int



Typechecking II
3. The type of a function-application expression is obtained as the result from the 

function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type

((fun (x:int) (y:bool) -> y)  3)  : ??



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> ??

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> ??

bool

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool

bool

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool int

??

bool

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool int

bool

bool -> bool

Here:
  T1 = int
  T2 = bool -> bool

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking III
• What about generics? i.e., what if  f:'a ->'a?

• For generic types we unify
– Given a function         f  : T1 -> T2
– and an argument       e  : U1                   of the input type

Can “match up” T1 and U1 to obtain information about type parameters in T1 and U1 based on 
their usage

• Unification:
– try to match up corresponding parts of the type

               (int list) tree       ⇔         'a tree

– Obtain an instantiation: e.g.   'a = int list
– Propagate that information to all occurrences of  ‘a
– If not possible, unification fails, meaning a type checking error

    bool tree       ⇔        int tree

ERROR! bool  ≠  int



Example Typechecking Problem
empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

??



Example Typechecking Problem
empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

'v -> ??



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v ('k, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) mapApplication:
T1 = 'k
T2 = 'v -> ('k,'v) map -> ('k,'v) map 

Instantiate:   'k = int

T2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapAnother Application:  
T’1 = 'v
T’2 = (int,'v) map -> (int,'v) map 

Instantiate:   'v = 'v

T2

T’2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapA third Application:  
T’’1 = (int,'v) map
T’’2 = (int,'v) map 

Argument and argument
type already agree

T2

T’2

T’’2= (int, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map
T2

T’2

T’’2= (int,’v) map
U1 -> U2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map
T2

T’2

T’’2= (int,’v) map
U1 -> U2

Another Application:  
U1 = ('k,'v) map 
U2 = ('k * 'v) list 

Unify U1 with T’’2

   ('k,'v) map    ~~    (int,'v) map

Instantiate 'k = int
??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v (int, 'v) map
T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:  
U1 = (int,'v) map 
U2 = (int * 'v) list 

U2= (int * 'v) list

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:’v) -> entries (add 3 x empty)

'v -> (int * 'v) list

int 'v (int, 'v) map
T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:  
U1 = (int,'v) map 
U2 = (int * 'v) list 

U2= (int * 'v) list

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Ill-typed Expressions?
• An expression is ill-typed if, during this type checking process, inconsistent 

constraints are encountered:

   add 3 true (add “foo” false empty)

Error: found int but expected string

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list





What is the type of this expression?

1. int list -> int list

2. int list -> int list -> int list

3. int list -> (int -> int) list

4.  None (it doesn’t typecheck)

let e : ______  = 
  transform (fun x y -> x + y)

Answer: 3


