
Programming Languages
and Techniques

(CIS1200)

Lecture 15

ASM, Queues
Lecture notes: Chapter 16

Announcements
• Midterm 1 Grades and Solutions available soon
– Posted after class
– Dr. Weirich's office hours next week by appointment
– Regrade requests via Gradescope next two weeks
• Due by Friday, March 7th

• HW04 available
– due Tuesday, February 25th

Midterm 1 results

≤ 40 (40, 55] (55, 70] (70, 85] (85, 100] (100, 115] > 115
0

5

10

15

20

25

30

35

40

45 Median: 81/120
Mean: 79/120

85+ A range
70 - 85 B range
55 - 70 C range
40 - 55 D range
< 40 F

Abstract Stack Machine
Three “spaces”…
• workspace

– the expression the computer is
currently simplifying

– abstraction of the CPU

• stack
– temporary storage for local variables and

saved work
– abstraction of (part of) RAM

• heap
– storage area for large data structures
– abstraction of (part of) RAM Abstract stack machine

HeapStackWorkspace
let x = …

Abstract Stack Machine
Initial state:
• workspace contains whole program
• stack and heap are empty

Machine operation:
• In each step, choose “next part” of the

workspace expression and simplify it
• (Sometimes this will change the stack

and/or heap)
• Stop when there are no more

simplifications to be done

HeapStackWorkspace

Abstract stack machine

let x = …

HeapStack

Nil

Values and References
A value is either:
• a primitive value like an integer, or,
• a reference to a location in the heap
A reference value is the address (location) of data in the heap.

We draw a reference value as an arrow pointing to the data “located at” this address

Cons 3This box contains a
reference value

(the arrow itself)
The reference points to

this heap location
containing a Cons cell

…and a reference value
pointing to the heap
location of a Nil cell

References and Equality

= vs. ==

Reference Equality
• Suppose we have two counters. Are they at the same location?

 type counter = { mutable count : int }
 let c1 : counter = …
 let c2 : counter = …
– We could increment one and see whether the other’s value changes.
– But we could also just test whether the references are aliases.

• OCaml uses ‘==‘ to mean reference equality:
– two reference values are ‘==‘ if they point to the same location in the

heap; so:

r2 == r3

not (r1 == r2)

r1 = r2

Stack Heap

r1

r2

r3

count 0

count 0

Structural vs. Reference Equality
• Structural (in)equality: v1 = v2 v1 <> v2

– recursively traverses over the structure of the data, comparing the two values’ components for
structural equality

– function values cannot be compared structurally
– structural equality can go into an infinite loop on cyclic structures
– appropriate for comparing immutable datatypes

• Reference (in)equality: v1 == v2 v1 != v2
– Only looks at where the two references point in the heap
– function values are only equal to themselves
– even if v1 = v2, we may not have v1 == v2
– appropriate for comparing mutable datatypes

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 = p2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 == p2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in

p1 == p2

Answer: false

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 = l2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 == l2

Answer: false

ASM: Lists and datatypes

Tracking the space usage of immutable data structures

Simplification

[1;2;3]

Workspace Stack Heap

1::2::3::[]

type ‘a list =
 | Nil
 | Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

type ‘a list =
 | Nil
 | Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap

Nil

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap

Nil

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap

Nil

Cons 3

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap

Nil

Cons 3

Simplification

Cons (1,)

Workspace Stack Heap

Nil

Cons 3

Cons 2

Simplification

Cons (1,)

Workspace Stack Heap

Nil

Cons 3

Cons 2

Simplification
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1

DONE!

An Optimization
• Datatype constructors that carry no extra information can be treated as “small”

values.
• Examples:

• They can be placed directly in the stack.
• They don’t require a reference in the heap.
• N.b.: This optimization affects reference equality.

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a option =
| None
| Some of ‘a

type ‘a tree =
| Empty
| Node of ‘a tree * ‘a * ‘a tree

Saves space!

Example Optimization
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1

Example Optimization
Workspace Stack Heap

Cons 3 Nil

Cons 2

Cons 1

Nil

Idea: because constructors with
no data are “small”, they take
the same space as a reference.

Rather than refer to them
indirectly via a reference,
just put them in place.

This implies that:
 None == None
 [] == []
 Empty == Empty

ASM: functions

Function Simplification

let add1 (x : int) : int =
 x + 1 in
add1 (add1 0)

Workspace Stack Heap

Function Simplification

let add1 (x : int) : int =
 x + 1 in
add1 (add1 0)

Workspace Stack Heap

Rewrite add1 as an anonymous function

Function Simplification

let add1 = fun (x : int) ->
 x + 1 in
add1 (add1 0)

Workspace Stack Heap

Function Simplification

let add1 = fun (x : int) ->
x + 1 in

add1 (add1 0)

Workspace Stack Heap

Function values are large, so…

Function Simplification

let add1 = in
add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1

…we put the body in the heap!
Then reduce the let as usual…

Function Simplification

add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

Function Simplification

add1 (0)

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

Here comes the crucial step!

Push the Workspace & Argument

add1 (_____)

Workspace Stack Heap

fun (x:int) -> x + 1
 add1add1 (___0)

0

Push the workspace containing the "hole" where the return
value will go, saving it on the stack.

Combine the actual argument with parameter name as a new
binding on the stack

Do the Call, Saving the Workspace

x+1

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

add1 ()

x 0

Note the workspace and function argument are pushed onto the stack
• compare with the workspace on the previous slide
• the name ‘x’ comes from the parameter name in the heap
• the value 0 comes from the actual argument at the call site

 The new workspace contains the body of the function

After a few more steps…

1

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

1

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

add1 (add1 0)

x 0

add1 ()

POP!
The workspace has been
reduced to a value, but
there is still some
computation left to
finish on the stack

Function Simplification

add1 1

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

"Return" to the old computation, plugging in
the returned value.

See how the ASM restored the saved workspace,
replacing its `hole’ with the value computed into
the old workspace. (Compare with previous slide.)

Function Simplification

x+1

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

x 1

(____)

Function Simplification

2

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

add1 1

x 1

(____)

POP!

Function Simplification

2

Workspace Stack Heap

fun (x:int) -> x + 1
 add1

DONE!

Simplifying Functions
• A function definition “let f (x1:t1)…(xn:tn) = e in body” is always ready.

– It is simplified by replacing it with “let f = fun (x:t1)…(x:tn) = e in body”

• A function “fun (x1:t1)…(xn:tn) = e” is always ready.
– It is simplified by moving the function to the heap and replacing the function expression with a

pointer to that heap data.

• A function call is ready if the function and its arguments are all values
– it is simplified by

• saving the current workspace contents on the stack
• adding bindings for the function’s parameter variables (to the actual argument values) to the end of the

stack
• copying the function’s body to the workspace

Function Completion
• When the workspace contains just a single value, we pop the stack by removing

everything back to (and including) the last saved workspace contents.

• The value currently in the workspace is substituted for the function application
expression in the saved workspace contents, which are put back into the workspace.

• If there aren’t any saved workspaces in the stack, then the whole computation is
finished and the value in the workspace is its final result.

Putting State to Work:
Mutable Queues

A design problem
Suppose you are implementing a website for constituents to submit questions to their
political representatives. To be fair, you would like to deal with questions in first-come, first-
served order. How would you do it?

• Understand the problem
– Need to keep track of pending questions, in the order in which they were submitted

• Define the interface
– Need a data structure to store questions
– Need to add questions to the end of the queue
– Need to allow responders to retrieve questions from the beginning of the queue
– Both kinds of access must be efficient to handle large volume

Design Process Step 1:
Understand the problem

(Mutable) Queue Interface
module type QUEUE =
sig
 (* abstract type *)
 type 'a queue

 (* Make a new, empty queue *)
 val create : unit -> 'a queue

 (* Determine if a queue is empty *)
 val is_empty : 'a queue -> bool

 (* Add a value to the end of a queue *)
 val enq : 'a -> 'a queue -> unit

 (* Remove the first value (if any) and return it *)
 val deq : 'a queue -> ‘a option

end

Q: We can tell, just looking at
this interface, that it is for a
MUTABLE data structure. How?

Design Process Step 2:
specify the interface

A: Adding an element
to a queue returns
unit because it
modifies the given
queue.

Since queues are mutable, we
must allocate a new one every
time we need one.

Specify the behavior via test cases
let test () : bool =
 let q = create () in
 enq 1 q;
 begin match deq q with
 | None -> failwith "deq failed"
 | Some hd -> hd = 1 && is_empty q
 end
;; run_test "queue test 1" test

let test () : bool =
 let q : int queue = create () in
 enq 1 q;
 enq 2 q;
 let _ = deq q in
 begin match deq q with
 | None -> false
 | Some hd -> hd = 2 && is_empty q
 end
;; run_test "queue test 2" test Design Process Step 3:

write test cases

Implementing Linked Queues

Representing links

Data Structure for Mutable Queues
type 'a qnode = {
 v: 'a;
 mutable next : 'a qnode option
}

type 'a queue = { mutable head : 'a qnode option;
 mutable tail : 'a qnode option }

There are two parts to a mutable queue:
1. the “internal nodes” of the queue, with links from one
 to the next
2. a record with links to the head and tail nodes

All of these links are optional so that the queue can be empty

Queues in the Heap

head
tail

None

None

An empty queue

head
tail

Some

Some

v 1

next None

A queue with one element

head
tail

Some

Some

v 1

next
v 2

next
NoneSome

A queue with two elements

type 'a qnode = {
 v: 'a;
 mutable next : 'a qnode option
}

type 'a queue = { mutable head : 'a qnode option;
 mutable tail : 'a qnode option }

Type Information

: int queue

: int qnode
: int qnode option

: int qnode option

Visual Shorthand: Abbreviating Options

head
tail

An empty queue

A queue with one element

A queue with three elements

head
tail

v 1

next

Nonemeans

Some
ValVal means

head
tail

v 1

next
v 2

next
v 3

next

*Note: Ocaml can optimize "nullary" constructors like Nil, None,
Empty so that they aren't allocated in the heap. This is why

 None == None
even though

 not ((Some x) == (Some x)).
Be careful with reference equality and options!

*

“Bogus” values of type int queue

head
tail

head is None, tail is Some

v 1

next
head
tail

v 1

next

head is Some, tail is None

tail is not reachable from head

head
tail

v 1

next
v 2

next

tail doesn’t point to the last element of the queue

head
tail

v 1

next
v 2

next
v 2

next

Given the queue datatype shown below, is it possible to create a cycle of
references in the heap. (i.e. a way to get back to the same place by following
references.)

1. yes
2. no
3. not sure

type 'a qnode = {
 v: 'a;
 mutable next : 'a qnode option
}

type 'a queue = { mutable head : 'a qnode option;
 mutable tail : 'a qnode option }

Answer: 1

head
tail

v 1

next

Cyclic int queue values

head
tail

v 1

next
v 2

next

head
tail

v 1

next

(And many, many others…)

Linked Queue Invariants
Just as we imposed some restrictions on which trees count as legitimate Binary Search Trees,
we require that Linked Queues satisfy the following representation invariants:

• We can prove that these properties suffice to rule out all of the “bogus” examples.
• Each queue operation may assume that these invariants hold on its inputs and must ensure

that the invariants hold when it’s done.

Either:
 (1) head and tail are both None (i.e., the queue is empty)
or
 (2) head is Some n1, tail is Some n2 and
 - n2 is reachable from n1 by following ‘next’ pointers
 - n2.next is None

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next
v 2

next

Either:
 (1) head and tail are both None (i.e. the queue is empty)
or
 (2) head is Some n1, tail is Some n2 and
 - n2 is reachable from n1 by following ‘next’ pointers
 - n2.next is None

ANSWER: No

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next

Either:
 (1) head and tail are both None (i.e. the queue is empty)
or
 (2) head is Some n1, tail is Some n2 and
 - n2 is reachable from n1 by following ‘next’ pointers
 - n2.next is None

ANSWER: Yes

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next

Either:
 (1) head and tail are both None (i.e. the queue is empty)
or
 (2) head is Some n1, tail is Some n2 and
 - n2 is reachable from n1 by following ‘next’ pointers
 - n2.next is None

ANSWER: Yes

Implementing Linked Queues

q.ml

create and is_empty

• create establishes the queue invariants
– both head and tail are None

• is_empty assumes the queue invariants
– it doesn’t have to check that q.tail is None

(* create an empty queue *)
let create () : 'a queue =
 { head = None;
 tail = None }

(* determine whether a queue is empty *)
let is_empty (q:'a queue) : bool =
 q.head = None

enq

• The code for enq is informed by the queue invariant:
– either the queue is empty, and we just update head and tail, or
– the queue is non-empty, in which case we must “patch up” the

“next” link of the old tail node to maintain the queue invariant.

(* add an element to the tail of a queue *)
 let enq (x: 'a) (q: 'a queue) : unit =
 let newnode = {v=x; next=None} in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Calling Enq on a non-empty queue

enq 2 q

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Calling Enq on a non-empty queue

enq 2 q

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Calling Enq on a non-empty queue

2 q

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Calling Enq on a non-empty queue

2 q

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Calling Enq on a non-empty queue

2

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Calling Enq on a non-empty queue

(2)

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

Note: we condense several steps of
function applications into one when
there are multiple arguments…
We push one saved workspace and
bind all the arguments in the stack

(This is technically an optimization.)

Calling Enq on a non-empty queue

let newnode = {v=x; next=None} in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=x; next=None} in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=2; next=None} in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=2; next=None} in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

Note: there is no “Some bubble”: this
is a qnode, not a qnode option.

Calling Enq on a non-empty queue

let newnode = in
 begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

Calling Enq on a non-empty queue

begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match q.tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match .tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match .tail with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match with
 | None ->
 q.head <- Some newnode;
 q.tail <- Some newnode
 | Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
 end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match with
| None ->

 q.head <- Some newnode;
 q.tail <- Some newnode

| Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Simplifying Match
• A match expression
begin match e with
 | pat1 -> branch1
 | …
 | patn -> branchn
end

 is ready if e is a value
– Note that e will always be a pointer to a constructor cell in the heap
– This expression is simplified by finding the first pattern pati that matches the cell and adding

new bindings for the pattern variables (to the parts of e that line up) to the end of the stack
– replacing the whole match expression in the workspace with the corresponding branchi

Calling Enq on a non-empty queue

begin match with
| None ->

 q.head <- Some newnode;
 q.tail <- Some newnode

| Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

?

Calling Enq on a non-empty queue

begin match with
| None ->

 q.head <- Some newnode;
 q.tail <- Some newnode

| Some n ->
 n.next <- Some newnode;
 q.tail <- Some newnode
end

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

?

Calling Enq on a non-empty queue

n.next <- Some newnode;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Note: n points to a
qnode, not a
qnode option.

Calling Enq on a non-empty queue

n.next <- Some newnode;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some newnode;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some newnode;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some ;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some ;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- ;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- ;
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

();
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

();
 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 q.tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <- Some newnode

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <- Some

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <- Some .

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <-

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 .tail <- .

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 ()

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

 ()

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

nPOP!

Calling Enq on a non-empty queue

 ()

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

v 2

next

DONE!

Calling Enq on a non-empty queue

 ()

Workspace Stack Heap

enq

q

fun (x: 'a) (q: 'a queue) ->
 let newnode = {v=x; next=None}
in begin match q.tail with
 | None -> …
 | Some n -> …
 end

head
tail

v 1

next

v 2

next

Notes:
- the enq function imperatively updated
the structure of q

- the new structure still satisfies the
queue invariants

