
Programming Languages
and Techniques

(CIS1200)

Lecture 17

Hidden State, Objects
Chapter 17

Announcements

• HW05 available soon, due Tuesday, March 18th (at 11.59pm)
– Start early! This homework is difficult.
– Tasks 0-1 can be done after class today
– Tasks 2-4 can be done after class on Friday
– Tasks 5-6 can be done after class on Monday

• Final Exam
– Wednesday, May 7th, 9-11 am

Tail Recursion Recap

length (recursively)

As we’ve just seen, this implementation uses a lot of stack space
if q is large.
Can we do better?

(* Calculate the length of the queue recursively *)
 let length (q:'a queue) : int =
 let rec loop (no: 'a qnode option) : int =
 begin match no with
 | None -> 0
 | Some n -> 1 + (loop n.next)
 end
 in
 loop q.head

length (using iteration)

This implementation of length also uses a helper function, loop:
– This loop takes an extra argument, len, called the accumulator
– Unlike the previous solution, the computation happens “on the way down” as opposed to “on the

way back up”
– Note that loop will always be called in an otherwise-empty workspace—the results of the call to
loop never need to be used to compute another expression. In contrast, we had (1 + (loop …))
in the recursive version.

(* Calculate the length of the list using iteration *)
let length (q:'a queue) : int =
 let rec loop (no:'a qnode option) (len:int) : int =
 begin match no with
 | None -> len
 | Some n -> loop n.next (1+len)
 end
 in
 loop q.head 0

Crucial Observations
• Tail call optimization lets the stack take only a fixed amount of

space.

• The recursive call to loop effectively updates the stack
bindings in place.
– We can think of these bindings as the state being modified by each

iteration of the loop.

• These two properties are the essence of iteration.
– They are the difference between general recursion and iteration

What happens when you run this function on a (valid) queue
containing 2 elements?

1. The value 2 is returned
2. The value 0 is returned
3. StackOverflow
4. Your program hangs

let f (q:'a queue) : int =
 let rec loop (qn:'a qnode option) : int =
 begin match qn with
 | None -> 0
 | Some n -> 1 + loop qn
 end
 in loop q.head

ANSWER: 3

What happens when you run this function on a (valid) queue
containing 2 elements?

1. The value 2 is returned
2. The value 0 is returned
3. StackOverflow
4. Your program hangs

let f (q:'a queue) : int =
 let rec loop (qn:'a qnode option) (len:int) : int =
 begin match qn with
 | None -> len
 | Some n -> loop qn (len + 1)
 end
 in loop q.head 0

ANSWER: 4

Infinite Loops

• This program will go into an infinite loop.
• Unlike a non-tail-recursive program, which uses some space on each recursive

call, there is no resource being exhausted, so the program will “silently diverge”
and simply never produce an answer…

(* Accidentally go into an infinite loop… *)
let accidental_infinite_loop (q:'a queue) : int =
 let rec loop (qn:'a qnode option) (len:int) : int =
 begin match qn with
 | None -> len
 | Some n -> loop qn (len + 1)
 end
 in loop q.head 0

More iteration examples

to_list
print
chop

to_list (using iteration)

• Here, the state maintained across each iteration of the loop is
the queue “index pointer” no and the (reversed) list of
elements traversed.

• The “exit case” post processes the list by reversing it.

(* Retrieve the list of values stored in the queue,
 ordered from head to tail. *)
let to_list (q: 'a queue) : 'a list =
 let rec loop (no: 'a qnode option) (l:'a list) : 'a list =
 begin match no with
 | None -> List.rev l
 | Some n -> loop n.next (n.v::l)
 end
 in loop q.head []

print (using iteration)

• Here, the only state needed is the queue “index pointer”.

let print (q:'a queue) (string_of_element:'a -> string) : unit =
 let rec loop (no: 'a qnode option) : unit =
 begin match no with
 | None -> ()
 | Some n -> print_endline (string_of_element n.v);
 loop n.next
 end
 in
 print_endline "--- queue contents ---";
 loop q.head;
 print_endline "--- end of queue -----"

Singly-linked Queue Processing
• General structure (schematically) :

• What is useful to put in the state?
– Accumulated information about the queue (e.g., length so far)
– Link to previous node (so that it could be updated, for example)

(* Process a singly-linked queue. *)
let queue_operation (q: 'a queue) : ’b =
 let rec loop (current: 'a qnode option) (s:'a state) : ‘b =
 begin match current with
 | None -> … (* iteration complete, produce result *)

 | Some n -> … (* do something with n,
 create new loop state *)
 loop n.next new_s

 end
 in loop q.head init

Tail Recursion & Iteration
• A function call is in tail position if, when the call is evaluated in the workspace, there is no more work

to be done before returning.
– i.e., the result of the workspace is the result of the call

f x (* ß this is in tail position *)

if … then
 f x (* ß this f is in tail position *)
else
 (f x) + 1 (* ß this f is not in tail position *)

begin match … with
 | … -> f x (* ß this f is in tail position *)
 | … -> g (f x) (* ß this f is not in tail position,*)
end (* but g is in tail position *)

(g x) || (f x) (* ß this f is in tail position, g isn't *)

cmd ; (f x) (* ß this f is in tail position *)

Hidden State

Encapsulating State

An “incr” function
A function with internal state:

Drawbacks:
– No modularity: There is only one counter in the world. If we want

another counter, we need to build another counter_state value (say,
ctr2) and another incrementing function (incr2)

– No encapsulation: Code anywhere in the rest of the program can
directly modify count

type counter_state = { mutable count:int }

let ctr = { count = 0 }

(* each call to incr will produce the next integer *)
let incr () : int =
 ctr.count <- ctr.count + 1;
 ctr.count

Using Hidden State
Better: Make a function that creates a counter state plus an incr function each time a
counter is needed

(* More useful: a counter generator: *)
let mk_incr () : unit -> int =
 (* this ctr is private to the returned function *)
 let ctr = { count = 0 } in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

(* make one counter *)
let incr1 : unit -> int = mk_incr ()

(* make another counter *)
let incr2 : unit -> int = mk_incr ()

What number is printed by this program?

1. 1
2. 2
3. 3
4. other

Answer: 1

let mk_incr () : unit -> int =
 let ctr = { count = 0 } in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 = mk_incr () (* make one counter *)
let incr2 = mk_incr () (* and another *)

let _ = incr1 () in print_int (incr2 ())

Running mk_incr

let mk_incr () : unit -> int =
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int = fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int = fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int =

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Running mk_incr

let mk_incr : unit -> unit ->
int = .

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Running mk_incr

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
(())

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
(())

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

Running mk_incr

let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

Running mk_incr

let ctr = in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0

Running mk_incr

let ctr = in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0

Running mk_incr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

Running mk_incr

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

POP!

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
()

Uh Oh! No way to access
ctr when we call this

function

Local Functions (right)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.countNote: We need one refinement of the

ASM model that we’ve explained so
far. Why?

The function body that we’re putting
in the heap mentions “ctr”, which is on
the stack at the moment but about to
be popped off…

…so we save a copy of the
relevant stack binding with
the function itself.

This package of “function
body plus bindings” is called
a closure…

ctr

Key ste
p!

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

POP!

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr1 : unit -> int =
()

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr1 : unit -> int =
()

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

DONE!
Now the count record
is accessible only via the
incr1 function. This is the
sense in which the state
is “private” to incr1.

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1 () incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1 () incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

(()) incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

(()) incr1

Now let’s run “incr1 ()”

ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Tail Call!

NOTE: Since the function had
some saved stack bindings,
we add them to the stack
at the same time that we copy
the code into the workspace.

Now let’s run “incr1 ()”

ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- .count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- .count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 0 + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 0 + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

 .count <- 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

();
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

();
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

POP!

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

DONE!

Now Let’s run mk_incr again
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr2 : unit -> int =
mk_incr () incr1

Now Let’s run mk_incr again
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr2 : unit -> int =
mk_incr () incr1

…lots of steps…

After creating incr2…
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr2

Notice that the two different incr
functions have separate local states
because a new count record was
created in each call to mk_incr.

Key Idea: Closures

• A closure is a function with local bindings (i.e., part of the stack),
stored together on the heap
– Closures are the dynamic (run time) implementation of static scope
– When functions are allocated on the heap, we copy part of the stack
– When the functions are called, the copy goes back on the stack

• Only immutable variables can be stored in closures
– All variables in OCaml are immutable (even if they point to mutable data

structures in the heap)

let f : int -> bool =
 let x : int = 3 in
 let y : int = 4 in
 (fun z -> x = z + y)

In the code, x and y are defined
in a local scope

Heap

x 3
y 4

fun (z) -> x = y + z

At run time, x and y are copied
when f is stored in the heap

f

Stack Heap

y 4

x 3

Objects

One step further…
• mk_incr illustrates how to create different instance of local state so that we can

make as many counters as we need
– this state is encapsulated because it is only accessible by the closure

• What if we wanted to bundle together multiple operations that share the same local
state?
– e.g. incr and decr operations that work on the same counter state

Key Concept: Object
An object consists of:
• encapsulated mutable state (fields)
• operations that manipulate that state (methods)

A Counter Object
(* The type of counter objects *)
type counter = {
 get : unit -> int;
 incr : unit -> unit;
 decr : unit -> unit;
 reset : unit -> unit;
}

(* Create a fresh counter object with hidden state: *)
let new_counter () : counter =
 let ctr = {count = 0} in
 {
 get = (fun () -> ctr.count) ;
 incr = (fun () -> ctr.count <- ctr.count + 1) ;
 decr = (fun () -> ctr.count <- ctr.count - 1) ;
 reset = (fun () -> ctr.count <- 0) ;
 }

let c1 = new_counter ()
Stack Heap

fun () ->
 let ctr = {count = 0} in
 { … }

new_counter

count 0
fun () -> ctr.count
ctr

fun () ->
 ctr.count <- ctr.count + 1

ctr

fun () ->
 ctr.count <- ctr.count – 1

ctr

fun () ->
 ctr.count <- 0

ctr

get

incr

decr

reset

c1

Using Counter Objects
(* A helper function to create a nice string for printing *)
let ctr_string (s:string) (i:int) =
 s ^ ".ctr = " ^ (string_of_int i) ^ "\n"

let c1 = new_counter ()
let c2 = new_counter ()

;; print_string (ctr_string "c1" (c1.get ()))
;; c1.incr ()
;; c1.incr ()
;; print_string (ctr_string "c1" (c1.get ()))
;; c1.decr ()
;; print_string (ctr_string "c1" (c1.get ()))
;; c2.incr ()
;; print_string (ctr_string "c2" (c2.get ()))
;; c2.decr ()
;; print_string (ctr_string "c2" (c2.get ()))

Objects and GUIs

Where we’re going…
• HW 5: Build a GUI library and client application from scratch in OCaml

• Goals:
– Practice with first-class functions and hidden state (Ch 17)
– Bridge to object-oriented programming in Java
– Illustrate the event-driven programming model
– Give a feel for how GUI libraries (like Java’s Swing) are put together
– Apply everything we’ve seen so far to do some pretty serious programming

83

Building a GUI library & application

85

