
Programming Languages
and Techniques

(CIS1200)

Lecture 18

GUI library: Widgets, Layout, and Event Handling
Chapter 18

Announcements

• HW05 available now, due Tuesday, March 18th (at 11.59pm)
– Start early! This homework is long and challenging.
– Tasks 0-1 can be done after class today
– Tasks 2-4 can be done after class on Monday
– Tasks 5-6 can be done after class on Wednesday

• Final Exam
– Wednesday, May 7th, 9-11 am

Objects and GUIs

Where we’re going…
• HW 5: Build a GUI library and client application from scratch in OCaml

• Goals:
– Practice with first-class functions and hidden state (Ch 17)
– Bridge to object-oriented programming in Java
– Illustrate the event-driven programming model
– Give a feel for how GUI libraries (like Java’s Swing) are put together
– Apply everything we’ve seen so far to do some pretty serious

programming

7

Building a GUI library & application

9

Step #1: Understand the Problem
• There are two separate parts of this homework: an application

(Paint) and a GUI library (several files) used to build the
application

• What are the concepts involved in GUI libraries and how do
they relate to each other?

• How can we separate the various concerns on the project?

• Goal: The library should be reusable. It should be useful for
other applications besides Paint.

10

Gctx

Project Architecture

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Step #2, Interfaces: Project Architecture*
*program snippets will be color-coded according to this diagram

11

Starting point: The low-level Graphics module

• OCaml’s Graphics library provides very basic primitives for:
– Creating an area in the screen for graphics
– Drawing various shapes: points, lines, text, rectangles, circles, etc.
– Getting the mouse position, whether the mouse button is pressed,

what key is pressed, etc.
– See: https://ocaml.github.io/graphics/graphics/Graphics/

• How do we go from that to a full-blown GUI library?

12

https://ocaml.github.io/graphics/graphics/Graphics/

Module: Gctx

“Contextualizes” graphics operations

Gctx.ml

Challenge: Widget Layout
• Widgets are “things drawn on the screen”. How to make them location

independent?
• Idea: Use a graphics context to allow drawing relative to a widget’s

current position

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
widgets from
the Graphics
module.

14

GUI terminology – Graphics Context
• Translates coordinates
– Translates coordinates so all widgets can

pretend that they are at the origin
– Flips from OCaml to “standard” coordinates

so origin is top-left
• Also carries information about how

things should be drawn:
– color
– line width

• "Task 0" in the homework helps you understand the interaction
between Gctx and OCaml's Graphics module

15

Graphics Contexts

let top = Gctx.top_level in

16

This top box is a picture
of the whole window.

Graphics Contexts

let top = Gctx.top_level

17

The top graphics context represents
a coordinate system anchored
at (0,0), with current pen color
of black.

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

18

Drawing a string at (0,10) in this
context positions it on the left
edge and 10 pixels down.
The string is drawn in black.

CIS 1200

Graphics Contexts

19

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

Translating the gctx has the
effect of shifting the origin
relative to the old origin.

CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

20

dx

dy CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

21

dx

dy

with_color changes the
current drawing color...

CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200" 22

dx

dy

Drawing the same string
at the same coordinates
in the new context causes
it to display at a translated
location and in the
new color.

CIS 1200

CIS 1200

Graphics Contexts

23

CIS 1200

CIS 1200

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200"

The graphics contexts
aren't displayed anywhere:
they only serve as frames
of reference...

Graphics Contexts

25

CIS 1200

CIS 1200

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200"
let ctx3 = ???
;; Gctx.draw_string ctx3 (0,0) "HERE!"

HERE!

Which of the following can we fill in
for ??? to obtain the result shown?

1. Gctx.translate top (dx,0)
2. Gctx.translate top (0,-dy)
3. Gctx.translate nctx (dx,0)
4. Gctx.translate nctx (0,-dy)

Answer: 4

OCaml vs. “Standard” Coordinates

OCaml (0,0)

Standard (0,0)
size_x

size_y

Standard (x,y) = OCaml (x, size_y - y)

(x,y)

26

The graphics context also translates between
"standard" GUI coordinates, with (0,0) origin at the
upper left of the window, to OCaml's "Cartesian"
coordinates, with (0,0) origin at the lower left of
the window...

Module Gctx

(** The main (abstract) type of graphics contexts. *)
type gctx

(** The top-level graphics context *)
val top_level : gctx

(** A widget-relative position *)
type position = int * int

(** Display text at the given (relative) position *)
val draw_string : gctx -> position -> string -> unit
(** Draw a line between the two specified positions *)
val draw_line : gctx -> position -> position -> unit

(** Produce a new gctx shifted by (dx,dy) *)
val translate : gctx -> int * int -> gctx
(** Produce a new gctx with a different pen color *)
val with_color : gctx -> color -> gctx

27

Widget Layout

Building blocks of GUI applications
see simpleWidget.ml in GUI Demo Code project

Gctx.ml

Widget Layout
• Widgets are “things drawn on the screen”. How to make them location

independent?
• Idea: Use a graphics context to make drawing relative to the widget’s current

position

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
Widgets
module from
the Graphics
module.

A “Hello World” application
(* Create some simple label widgets *)
let l1 = label "Hello"
let l2 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border
 (hpair (border l1)
 (hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

hello.ml

Simple Widgets

• You can ask a simple widget to repaint itself (relative to some
graphics context)

• You can ask a simple widget to tell you its size
• (We'll talk about handling events later)

(* An interface for simple GUI widgets *)
type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> (int * int)
}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

simpleWidget.mli

Widget Examples

(* A simple widget that puts some text on the screen *)
let label (s:string) : widget =
{
 repaint = (fun (g:Gctx.gctx) -> Gctx.draw_string g (0,0) s);
 size = (fun () -> Gctx.text_size s)
}

(* A "blank" area widget -- it just takes up space *)
let space ((w,h):int*int) : widget =
{
 repaint = (fun (_:Gctx.gctx) -> ());
 size = (fun () -> (w,h))
}

simpleWidget.ml

simpleWidget.ml

The canvas Widget
• Region of the screen that can be drawn upon
• Has a fixed width and height
• Parameterized by a repaint method
– …which will directly use the Gctx drawing routines to draw on the

canvas

let canvas ((w,h):int*int) (r: Gctx.gctx -> unit) : widget =
{
 repaint = r;
 size = (fun () -> (w,h))
}

simpleWidget.ml

Nested Widgets

Containers and Composition

The Border Widget Container

let b = border w
• Draws a one-pixel-wide border (+ a one-pixel space) around contained widget w
• b’s size is slightly larger than w’s (+4 pixels in each dimension)

• b’s repaint method must call w’s repaint method

• When b asks w to repaint, b must translate the gctx to (2,2) to account for the displacement of w
from b’s origin

0 1 2 3 …
0
1
2
3

w

w’s width

w’s
height

(w’s width + 4) - 1

translate
the gctx

(w’s height + 4) - 1

The Border Widget

let border (w:widget):widget =
{
repaint = (fun (g:Gctx.gctx) ->
 let (width,height) = w.size () in
 let x = width + 3 in
 let y = height + 3 in
 Gctx.draw_line g (0,0) (x,0);
 Gctx.draw_line g (0,0) (0,y);
 Gctx.draw_line g (x,0) (x,y);
 Gctx.draw_line g (0,y) (x,y);
 let gw = Gctx.translate g (2,2) in
 w.repaint gw);

size = (fun () ->
 let (width,height) = w.size () in
 (width+4, height+4))
}

Draw the border

Display the interior

simpleWidget.ml

The hpair Widget Container

• let h = hpair w1 w2
• Creates a horizontally adjacent pair of widgets
• Aligns them by their top edges
• Size is the sum of their widths and max of their heights

w1
w2

translate
gctx to
repaint w2

h’s width

h’s
height

The hpair Widget

let hpair (w1: widget) (w2: widget) : widget =
 {
 repaint = (fun (g: Gctx.gctx) ->
 let (x1, _) = w1.size () in begin
 w1.repaint g;
 w2.repaint (Gctx.translate g (x1,0))
 (* Note translation of the Gctx *)
 end);

size = (fun () ->
 let (x1, y1) = w1.size () in
 let (x2, y2) = w2.size () in

(x1 + x2, max y1 y2))
}

simpleWidget.ml

Translate the Gctx
to shift w2’s position
relative to widget-local
origin.

Widget Hierarchy Pictorially
(* Create some simple label widgets *)
let l1 = label "Hello"
let l2 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border (hpair (border l1)
 (hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

swdemo.ml

Drawing: Containers

border

hpair

border

label

hpair

space border

label

.repaint g1

.repaint g2

Hello World

.repaint g

.repaint g1

.repaint g3

.repaint g3
.repaint g4

.repaint g5

Container widgets propagate repaint commands to their
children, with appropriately modified graphics contexts:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (2,2)
g3 = Gctx.translate g1 (hello_width,0)
g4 = Gctx.translate g3 (space_width,0)
g5 = Gctx.translate g4 (2,2)

Coding with Simple Widgets

see swdemo.ml

"lightbulb" demo

Clicking here
makes the “lightbulb” turn on
and changes label text

Clicking again
makes it turn back off

Do you know how you would use the
(simple) widget library to define the layout
of this lightbulb application?

1. I'm not sure how to start.

2. I may have it, but I'm not sure.

3. Sure! No problem.

(* An interface for simple GUI widgets *)
type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> (int * int)
}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

"lightbulb" demo layout

canvas,
with
border

label, with borderspace

let onoff = border (label "ON")

let paint_bulb (g: Gctx.gctx) : unit = …

let bulb = border (canvas (100, 100) paint_bulb)

let top : widget = hpair bulb (hpair (space (20, 20)) onoff)

swdemo.ml

