Programming Languages
and Techniques
(C1S1200)

Lecture 19

GUI library: Events and State
Chapter 18

Looking Ahead...

HWO05: GUI Programming

— due Tuesday March 18 after Spring Break
— START NOW!!

— aim to complete by this Friday

Friday March 7th: NO CLASS
No classes/recitations/TA office hours during Spring Break!

Two weeks after break will move quickly
— Transition to Java: Monday, March 17

— Java Bootcamp: Wednesday, March 19

— Homework 06 (Java) due: Tuesday, March 25
— Midterm 2: Friday, March 28

* OCaml: ASM, mutability, queues/deques, closures, GUI, and Java basics

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

| —.l
20: How far along are you in HWO05: GUI Programming? 0
Not started yet
0%
Task 0 finished
0%
Working on tasks 1-4
0%
Working on Task 5
0%
Working on Task 6
0%
All donel!
0%
| |

Building blocks of GUI applications

see simpleWidget.ml in GUI Demo Code project

Widget Layout

Widgets are “things drawn on the screen”. How to make them location
independent?

Idea: Use a graphics context to make drawing relative to the widget’s current
position

Application \r --- :

Paint.ml
_
The graphics
GUI Eventloop. Widget.ml context
Library isolates the
Getx.ml Widgets
- module from
the Graphics
Native OCaml’s Graphics Module (graphics.cma) module.
graphics
library

Layout with Simple Widgets

simpleWidget.mli

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;

size : unit -> (int * int)

val label : string -> widget

val space : int * int -> widget

val border : widget -> widget

val hpair : widget -> widget -> widget

val canvas : int * int -> (Gectx.gctx -> unit) -> widget

You can ask a simple widget to repaint itself
You can ask a simple widget to tell you its size
(We'll talk about handling events later)

Repainting is relative to a graphics context

Widget Hierarchy Pictorially

swdemo.ml

(* Create some simple label widgets *)
let 11 = label "Hello"
let 12 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border (hpair (border 11)
Chpair (space (10,10)) (border 12)))

border
¥
hpair
Hello World
border hpair
!
label space border On the screen
!
Widget tree label

"Fractal Tree" application

fractalTree.ml

(* Use the graphics context to draw a fractal tree x*)

let paint_tree (g:Gctx.gctx) : unit = .

(* Create a canvas widget that draws the fractal tree x*)
let ¢ = border (canvas (300, 240) paint_tree)

Widget Implementations

(* A simple widget that puts some text on the screen *)
let label (s:string) : widget =
{

size = (fun (O -> Gctx.text_size s)

}

repaint = (fun (g:Gctx.gctx) -> Getx.draw_string g (0,0) s);

simpleWidget.ml

(* A "blank" area widget -- it just takes up space *)
let space ((w,h):int*int) : widget =
{

repaint = (fun (_:Gctx.gctx) -> Q);
size = (fun O -> (w,h))
ks

simpleWidget.ml

Containers and Composition

The Border Widget Container

0123 .. (W's width +4) -1

0
translate A _
the gctx |2
3
WS
height

(W’s height +4) - 1

s width
let b = border w s

* Draws a one-pixel-wide border (+ a one-pixel space) around contained widget w
* b’s sizeis slightly larger than w’s (+4 pixels in each dimension)
* Db’srepaint method must call w’s repaint method

« When b asks w to repaint, b must translate the gctx to (2,2) to account for the displacement of w
from b’s origin

The Border Widget

simpleWidget.ml

let border (w:widget):widget =

{

repaint = (fun (g:Gctx.gctx) ->
let (width,height) = w.size () 1in
let x = width + 3 1in
let y = height + 3 in
Getx.draw_line g (0,0) (x,0); = | Draw the border
Gectx.draw_line g (0,0) (0,y);
Gectx.draw_line g (x,0) (x,y);
Gectx.draw_line g (0,y) (x,y);

Display the interior

let gw = Gectx.translate g (2,2) in
w.repaint gw);]’

size = (fun O ->
let (width,height) = w.size () in
(width+4, height+4))

}

The hpair Widget Container

translate

repaint w2

gctx to #

wl

w2

! h’s
height

let h = hpair wl w2

Creates a horizontally adjacent pair of widgets

h’s width

Aligns them by their top edges

Size is the sum of their widths and max of their heights

The hpair Widget

simpleWidget.ml

let hpair (wl: widget) (w2: widget) : widget =
{
repaint = (fun (g: Gctx.gctx) ->
let (x1, _) = wl.size () in begin

(* Note translation of the Gctx *)

wl.repaint g;
wZ2.repaint (Gctx.translate g (xl,@))}_
end);

Translate the Gctx

size = (fun () -> to shift w2’s position

let (x1, yl1) = wl.size () in : Foo
let (x2, y2) = w2.size () 1in (r)?liz’ic:]ve to widget-local
(x1 + x2, max yl y2)) :

Drawing: Containers

Container widgets propagate repaint commands to their
children, with appropriately modified graphics contexts:

border | .repaint g
hpair | -repaintgl
— Hello| |World
border |.repaintgl | hpair | .repaint g3
1 " S let 11 = label "Hello"
. let 12 = label "World"
label space border | .repaintgd || ¢ \"_ porder (hpair (border 11)
repaintg2 .repaintg3 | (hpair (space (10,10))
label] . (border 12)))
.repaint g5 :: h.repaint Gctx.top_level
gl = Gctx.translate g (2,2)
g2 = Gectx.translate gl (2,2)
g3 = Gectx.translate gl (hello_width,®)
g4 = Gectx.translate g3 (space_width,®)

Gectx.translate

g4 (2,2)

see swdemo.ml

"lightbulb" demo

9] © about:blank
@ about:blank

|
|
|
| \
Clicking here

makes the “lightbulb” turn on
and changes label text

@] © about:blank

@ about:blank
lOFF,

.

Clicking again
makes it turn back off

19: Do you know how you would use the (simple) widget library to define the layout of this
application?

| don't know how to start

0%
00 N\ OCami graphics q
8 | may have it, but I'm not sure
0%
I'm sure |'ve got it

type widget = { 0%
repaint : Gctx.gctx -> unit;
size :unit -> (int * int)

}

val label : string -> widget

val space : int * int -> widget

val border : widget -> widget

val hpair : widget -> widget -> widget

val canvas : int * int -> (Gctx.gctx -> unit) -> widget

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Do you know how you would use the
(simple) widget library to define the layout
of this lightbulb application?

1. I'm not sure how to start.
2. I may have it, but I'm not sure.

3. Sure! No problem.

®0e about:blank

@® about:blank

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;

size : unit -> (int * int)

val label : string -> widget

val space : int * int -> widget

val border : widget -> widget

val hpair : widget -> widget -> widget

val canvas : int * int -> (Gctx.gctx -> unit) -> widget

"lightbulb" demo layout

space label, with border
o @ about:blank
@ about:blan /
canvas, |
with
border

swdemo.ml

let onoff = border (label "ON")

let paint_bulb (g: Gctx.gctx) : unit = ..
let bulb = border (canvas (100, 100) paint_bulb)
let top : widget = hpair bulb Chpair (space (20, 20)) onoff)

Project Architecture

Application 7T noooooooesoooooooooseooooooooooocooooooooos :
\ Paint

-
GUI Eventloop Widget
Library
Getx
- k
Native OCaml’s Graphics Module (graphics.cma)
graphics
library

Event loop with event handling

let run (w:widget) : unit =
let g = Gctx.top_level 1in
w.repaint g;
Graphics.loop
(fun e ->

Llear graph ()

w.handle g e}
w.repaint g)

..create the initial gctx..
.display the widget
.wait for user input

..Inform widget about the event..
.Update the widget's appearance..

Eventloop

let rec loop (f: event -> unit) :

let e = wait_next_event () 1in
f e;
loop f

unit =
. wait for 0S event

.. call function argument

. tail recursion

Graphics

Events

getx.mli

type event

val wait_for_event : unit -> event

type event_type =

| KeyPress of char (* User pressed a key *)
| MouseDown (* Mouse Button pressed, no movement *)
| MouseUp (* Mouse button released, no movement *)
| MouseMove (* Mouse moved with button up *)
| MouseDrag (* Mouse moved with button down *)

val event_type : event -> event_type

val event_pos : event -> gctx -> position

Remember:

The graphics context translates the location of the event to widget-local coordinates

Reactive Widgets

widget.mli

type widget = {
repaint : Gctx.gctx -> unit;
size : unit -> Gctx.dimension;
handle : Gctx.gctx -> Gectx.event -> unit

}

* Widgets now have a “method” for handling events

* The eventloop waits for an event and then gives it to the
root widget

* The widgets forward the event down the tree, according
to the position of the event

Event-handling: Containers

Container widgets propagate events to their children:

User clicks,
generating
I event e
borber handlege /
| "~
hpair |.handlegle Hello| |Wi¥1d
border h;air handle g2 e
label space bordet | .handle g3 e
label |} .handle g4 e
Widget tree gl = Getx.translate g (2,2) On the screen

g2 = Getx.translate g1 (hello_width,0)
g3 = Getx.translate g2 (space_width,0)
g4 = Getx.translate g3 (2,2)

Routing events
through container widgets

Event Handling: Routing

* When a container widget handles an event, it passes the event to the appropriate child

e The Gctx.getx must be translated so that the child can interpret the event in its own local
coordinates.

widget.ml

let border (w:widget):widget =
{ repaint = ..
size = ..;
handle = (fun (g:Gctx.gctx) (e:Gectx.event) ->
w.handle (Gctx.translate g (2,2)) e);

Routing events through hpair widgets

* The event handler of an hpair must check to see whether the event should be handled by the left or
right widget.
— Check the event’s coordinates against the size of the left widget
— If the event is within the left widget, let it handle the event
— Otherwise check the event’s coordinates against the right child’s
— If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.gctx) (e:Getx.event) ->
if event_within g e (wl.size ())
then wl.handle g e
else
let g = (Getx.translate g (fst (wl.size ()), ©0)) in
if event_within g e (W2.s1ze ())
then w2.handle g e

else Q)

19: Consider routing an event through an hpair widget constructed as shown. The event will
always be propagated either to wl or w2.

True

0%

False
0%

let hp = hpair wl w2

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Consider routing an event through an hpair widget
constructed by:

let hp = hpair wl w2

The event will always be propagated either to wl or w2.

1. True

2. False

Answer: False

Routing events through hpair widgets

Route to Route to

wl —) / w2

h’s
w2 / height

-

Drop this (./7’

event T o o o e i e e e e e et e e =

h’s width

* There are three cases for routing in an hpair.

* Aneventin the “empty area” should not be sent to either wl
or w2.

How can widgets react to events?

A plain (stateless) 1abel widget

let label (s:string) : widget =

{
repaint = (fun (g:Gctx.gctx) -> Getx.draw_string g (0,0) s);
handle = (fun _ _ -> O);
size = (fun () -> Gctx.text_size s)

h

39

first stab at a

A stateful Tabel Widget

let label (s: string) : widget =
let r = { contents = s } 1in

{ repaint = (fun (g: Gctx.gctx) -> Gctx.draw_string g (0,0) r.contents);
handle = (fun _ _ -> O);
size = (fun () -> Gctx.text_size r.contents)

¥

* The label "constructor"” creates an object: a record " containing a mutable string
plus “methods” that can access this mutable string.

* Question: how can users update this string in response to an event?
(ris "local" state -- accessible only by methods)

* Answer: The label constructor should give them a way to do it.

A stateful Label Widget

widget.ml

type label_controller = { set_label: string -> unit;
get_label: unit -> string }

let label (s: string) : widget * label_controller =
let r = { contents = s } 1in

({ repaint g gctx
draw_string g r.contents
handle o
size text_size r.contents
{ set_label = (fun (s: string) -> r.contents <- s);
get_label = (fun (O -> r.contents);

}

A controller gives
access to shared
state.

A label_controller
includes two methods:
accessing (getting) and
updating (setting) the
string.

