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Looking Ahead…
• HW05: GUI Programming

– due Tuesday, March 18 after Spring Break
– START NOW!!
– aim to complete by Friday

• Friday March 7th: NO CLASS
• No classes/recitations/TA office hours during Spring Break!

• HW06: Pennstagram (soft launch)
– Due Tuesday, March 25th
– If you finish HW06 and want to refresh Java over break, this project is now 

available.  





Review: Events and Event Handling
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Event-handling: Containers
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Container widgets propagate events to their children:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (hello_width,0)
g3 = Gctx.translate g2 (space_width,0)
g4 = Gctx.translate g3 (2,2) 



Event Listeners

See notifierdemo.ml  
(distributed with the lecture demos in Codio)



Handling multiple event types
• Problem:  Widgets may want to react to many different events
• Example: Button

– mouseclick: activates the button, primary reaction
– mouse movement:  tooltip?   
– key press:  keyboard access to the button functionality?

• These reactions should be independent
– Each event handled by a different event listener (i.e. first-class function)
– Widgets may have several listeners to handle a triggered event
– Listeners react in sequence; all are notified about the event

• Many different kinds of widgets react to events
– Don't want to repeat the code for buttons in other widgets in the library

• Solution: notifier!



Analogy: Handling multiple event types
• Problem:  Imagine a photo/video sharing app where you want to react 

to when your friend shares a new post
• Option 1 – Manual (Terrible idea!)

– Keep refreshing the page every minute to see if there’s new content

• Option 2 – Push Notifications 
– You can sign up to be notified when there is new content
– Other people can sign up for the same notification too
– If there is new content, you might “react” in a different way depending on the 

content – if it’s a picture, you want to reshare it; if it’s a video, you want to 
comment on it; ...

– Your (and other people’s) reactions should be independent!



Analogy: Listeners and Notifiers Pictorially
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listeners

Listeners and Notifiers Pictorially
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Notifiers
• A notifier is a container widget that adds event listeners to a node in the 

widget hierarchy 

– Note: this way of structuring event listeners is based on Java’s Swing Library
(we use Swing terminology).

• Event listeners “eavesdrop” on the events flowing through the notifier

– The event listeners are stored in a list
– They react in order
– Then the event is passed down to the contained widget

• Event listeners can be added by using a notifier_controller
type notifier_controller = { add_listener : event_listener -> unit }

type event_listener = Gctx.gctx -> Gctx.event -> unit

val notifier : widget -> widget * notifier_controller



Listeners

type event_listener = Gctx.gctx -> Gctx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit) : event_listener =
  fun (g:Gctx.gctx) (e: Gctx.event) ->
    if Gctx.event_type e = Gctx.MouseDown 
    then action ()
    

widget.ml

type widget = {
  repaint : Gctx.gctx -> unit;
  size    : unit -> Gctx.dimension;

handle  : Gctx.gctx -> Gctx.event -> unit
}

widget.mli
Note: the type event_listener is
the type of the handle method from
the widget type.  



Notifiers and Notifier Controllers

type notifier_controller = 
     { add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
  let listeners = { contents = [] } in
  { repaint = w.repaint;
    size    = w.size
    handle  =
      (fun (g: Gctx.gctx) (e: Gctx.event) ->
          List.iter (fun h -> h g e) listeners.contents;
          w.handle g e);
  },
  { add_event_listener =
      fun (newl: event_listener) ->
          listeners.contents <- 
                 newl :: listeners.contents
  }

Loop through the list
of listeners, allowing
each one to process
the event. Then pass
the event to the child.

The notifier_controller allows
new listeners to be added to 
the list.

widget.ml



Buttons  (at last!)

• A button widget is just a label wrapped in a notifier
• Add a mouseclick_listener to the button using the 

notifier_controller
• (For aesthetic purposes, we could also put a border around the 

label widget.)

(* A text button *)
let button (s: string) : widget 
                       * label_controller 
                       * notifier_controller =
  let (w, lc)  = label s in
  let (w', nc) = notifier w in
    (w', lc, nc)

widget.ml
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DEMO: ONOFF

onoff.ml  — changing state on a button click



Event Handling Summary
• An event is a signal: a mouse click or release, mouse motion, or keypress

– Events carry data, such as e.g., state of the mouse button, the coordinates of the mouse, the key pressed

• An event can be handled by a widget
– The top-level loop waits for an event and then gives it to the root widget, the widgets forward the event 

down the tree
– e.g., the container widgets propagate a mouse click event to the button that should handles it 

• Typically, the widget that handles an event updates some state of the GUI 
– e.g., to record whether the light is on or the label of the button
– state is usual updated via a controller, e.g., a label_controller

• A listener associates an action with a particular type of event
– e.g., a mouseclick_listener does something on a mouse click
– listeners are triggered when a notifier widget handles an event

• User sees the reaction to the event when the GUI repaints itself
– e.g., button has new label, canvas is a new color


