
Programming Languages
and Techniques

(CIS1200)

Lecture 20

GUI library: Events, Notifiers, and Controllers

Chapters 18

Looking Ahead…
• HW05: GUI Programming

– due Tuesday, March 18 after Spring Break
– START NOW!!
– aim to complete by Friday

• Friday March 7th: NO CLASS
• No classes/recitations/TA office hours during Spring Break!

• HW06: Pennstagram (soft launch)
– Due Tuesday, March 25th
– If you finish HW06 and want to refresh Java over break, this project is now

available.

Review: Events and Event Handling

Gctx

Project Architecture

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Event-handling: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

User clicks,
generating

event e
.handle g e

.handle g1 e

.handle g2 e

.handle g3 e

.handle g4 e

Container widgets propagate events to their children:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (hello_width,0)
g3 = Gctx.translate g2 (space_width,0)
g4 = Gctx.translate g3 (2,2)

Event Listeners

See notifierdemo.ml
(distributed with the lecture demos in Codio)

Handling multiple event types
• Problem: Widgets may want to react to many different events
• Example: Button

– mouseclick: activates the button, primary reaction
– mouse movement: tooltip?
– key press: keyboard access to the button functionality?

• These reactions should be independent
– Each event handled by a different event listener (i.e. first-class function)
– Widgets may have several listeners to handle a triggered event
– Listeners react in sequence; all are notified about the event

• Many different kinds of widgets react to events
– Don't want to repeat the code for buttons in other widgets in the library

• Solution: notifier!

Analogy: Handling multiple event types
• Problem: Imagine a photo/video sharing app where you want to react

to when your friend shares a new post
• Option 1 – Manual (Terrible idea!)

– Keep refreshing the page every minute to see if there’s new content

• Option 2 – Push Notifications
– You can sign up to be notified when there is new content
– Other people can sign up for the same notification too
– If there is new content, you might “react” in a different way depending on the

content – if it’s a picture, you want to reshare it; if it’s a video, you want to
comment on it; ...

– Your (and other people’s) reactions should be independent!

Analogy: Listeners and Notifiers Pictorially

App Notifier

Famous “influencer”

Notify me

:: :: :: []

Maintains list of listeners

Notify me

Notify me
New Post Notify!

Listeners

Event
(generator)

notifier
controller

listeners

Listeners and Notifiers Pictorially

border

hpair

border

label

hpair

space border

labelWidget tree

Hello World

On the screen

notifier l1 :: l2 :: l3 :: []

User clicks,
generating

event e

Notifiers
• A notifier is a container widget that adds event listeners to a node in the

widget hierarchy

– Note: this way of structuring event listeners is based on Java’s Swing Library
(we use Swing terminology).

• Event listeners “eavesdrop” on the events flowing through the notifier

– The event listeners are stored in a list
– They react in order
– Then the event is passed down to the contained widget

• Event listeners can be added by using a notifier_controller
type notifier_controller = { add_listener : event_listener -> unit }

type event_listener = Gctx.gctx -> Gctx.event -> unit

val notifier : widget -> widget * notifier_controller

Listeners

type event_listener = Gctx.gctx -> Gctx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit) : event_listener =
 fun (g:Gctx.gctx) (e: Gctx.event) ->
 if Gctx.event_type e = Gctx.MouseDown
 then action ()

widget.ml

type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> Gctx.dimension;

handle : Gctx.gctx -> Gctx.event -> unit
}

widget.mli
Note: the type event_listener is
the type of the handle method from
the widget type.

Notifiers and Notifier Controllers

type notifier_controller =
 { add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
 let listeners = { contents = [] } in
 { repaint = w.repaint;
 size = w.size
 handle =
 (fun (g: Gctx.gctx) (e: Gctx.event) ->
 List.iter (fun h -> h g e) listeners.contents;
 w.handle g e);
 },
 { add_event_listener =
 fun (newl: event_listener) ->
 listeners.contents <-
 newl :: listeners.contents
 }

Loop through the list
of listeners, allowing
each one to process
the event. Then pass
the event to the child.

The notifier_controller allows
new listeners to be added to
the list.

widget.ml

Buttons (at last!)

• A button widget is just a label wrapped in a notifier
• Add a mouseclick_listener to the button using the

notifier_controller
• (For aesthetic purposes, we could also put a border around the

label widget.)

(* A text button *)
let button (s: string) : widget
 * label_controller
 * notifier_controller =
 let (w, lc) = label s in
 let (w', nc) = notifier w in
 (w', lc, nc)

widget.ml

19

DEMO: ONOFF

onoff.ml — changing state on a button click

Event Handling Summary
• An event is a signal: a mouse click or release, mouse motion, or keypress

– Events carry data, such as e.g., state of the mouse button, the coordinates of the mouse, the key pressed

• An event can be handled by a widget
– The top-level loop waits for an event and then gives it to the root widget, the widgets forward the event

down the tree
– e.g., the container widgets propagate a mouse click event to the button that should handles it

• Typically, the widget that handles an event updates some state of the GUI
– e.g., to record whether the light is on or the label of the button
– state is usual updated via a controller, e.g., a label_controller

• A listener associates an action with a particular type of event
– e.g., a mouseclick_listener does something on a mouse click
– listeners are triggered when a notifier widget handles an event

• User sees the reaction to the event when the GUI repaints itself
– e.g., button has new label, canvas is a new color

