
Programming Languages 
and Techniques

(CIS1200)

Lecture 21

Transition to Java

Chapters 19 & 20



• HW05: GUI programming
– Due: Tuesday at 11.59pm

• Java Bootcamp / Refresher: Wednesday, March 19
– 7-9pm, Towne 100
– Will be recorded
– Look for more details on Ed

• HW06: Pennstagram
– Java array programming
– Available on course website
– Due Tuesday, March 25th 

• Midterm 2: Friday, March 28th 
– OCaml: ASM, mutability, queues/deques, closures, GUI, and Java basics 

Announcements
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Goodbye OCaml… 
…Hello Java!



CIS 1200 Semester Overview
• Declarative (Functional) programming

– persistent data structures
– recursion is main control structure
– frequent use of functions as data

• Imperative programming
– mutable data structures (that can be modified “in place”)
– iteration is main control structure

• Object-oriented and reactive programming
– mutable data structures / iteration
– heavy use of functions (objects) as data
– pervasive “abstraction by default”

OCaml

Java
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Recap: The Functional Style 
• Core ideas:

– immutable (persistent / declarative) data structures
– recursion (and iteration) over tree structured data
– functions as data
– generic types for flexibility (i.e. ‘a list)
– abstract types to preserve invariants  (i.e. BSTs)
– simple model of computation (substitution)

• Good for:
– elegant descriptions of complex algorithms & data
– compositional design
– “symbol processing” programs 

(compilers, theorem provers, etc.)
– reliable software / verification
– parallelism, concurrency, and distribution
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Other Popular Functional Languages

F#: Most similar to OCaml,
Shares libraries with C# Haskell  (CIS 5520)

Purity + laziness

Swift
iOS programming

Scala
Java / OCaml hybrid

Racket: LISP descendant; 
widely used in education
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Verse: Functional/Logic 
language for unreal engine



Java and OCaml together

Xavier Leroy, one of the principal 
designers of OCaml 

Guy Steele, one of the 
principal designers of Java

Moral: Java and OCaml are not so far apart…

me
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Functional programming 

• No primitive data structures, no tail 
recursion

• Trees must be encoded by objects, 
mutable by default, limited pattern 
matching*

• First-class functions less common**, 
objects instead

• Generic types***
• Abstract types through interfaces 

and public/private modifiers

• Immutable lists primitive, tail 
recursion

• Datatypes and pattern matching for 
immutable tree structured data

• First-class functions, transform and 
fold

• Generic types 
• Abstract types through module 

signatures

*feature of Java 17 (released 2021)
**late addition, encoded from objects
***not completely “first class” (see, e.g., Arrays) 11



OCaml vs. Java for FP
public abstract sealed class 
  Tree<A extends Comparable<A>> 
          permits Tree.Empty, Tree.Node {
      
  final static class 
    Empty<A extends Comparable<A>> extends Tree<A> {}

  final static class 
    Node<A extends Comparable<A>> extends Tree<A> {
      final A v;
      final Tree<A> lt;
      final Tree<A> rt;
      public Node(Tree<A> lt, A value, Tree<A> rt) {
        this.lt = lt; this.rt = rt; this.v = v;
      }

  public static <A extends Comparable<A>> 
    boolean lookup(A x, Tree<A> t) {
      if (t instanceof Node<A> n) {
        return switch (x.compareTo(n.value)) {
            case -1 -> lookup(x, n.left);
            case 1 -> lookup(x, n.right);
            default -> n.value.equals(x);
        };
      } else {
        return false;
      }
    }
}

type 'a tree = 
  | Empty
  | Node of ('a tree) * 'a * ('a tree)

let rec lookup (t:'a tree) (n:’a : bool =
  begin match t with
   | Empty -> false 
   | Node(lt, x, rt) ->
        x = n || 
        if n < x then lookup lt n
    else lookup rt n 
  end 

OCaml provides a succinct, clean
notation for working with generic,
immutable, tree-structured data.
Java requires more "boilerplate."
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Recap: The imperative style
• Core ideas:

– computation as change of state over time
– distinction between primitive and 

reference values
– aliasing!
– linked data-structures and iteration 

control structures
– generic types for flexibility (i.e., ‘a queue)
– abstract types to preserve invariants  

(i.e., queue invariant)
– Abstract Stack Machine model of computation

• Good for:
– high performance, low-level code
– numerical simulations
– implicit coordination between components (queues, GUI)
– explicit interaction with hardware

interior of a pocket watch
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Imperative programming 

• Most types have a null element. Partial 
functions can return null.

• Code is a sequence of statements that 
have effects, sometimes using 
expressions to compute values.

• References are mutable by default, 
must be explicitly declared to be 
constant

• No null. Partiality must be made 
explicit with options.

• Code is an expression that has a value. 
Sometimes computing that value has 
other effects.

• References are immutable by default, 
must be explicitly declared to be 
mutable 
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Explicit vs. Implicit Partiality
      variables

• Can be assigned to after initialization

• Can always be null

• Check for null is implicit whenever a 
variable is used

  
• If null is used as an object (i.e. for a method 

call) then a NullPointerException occurs

          identifiers
• Cannot be changed once created; only 

mutable fields can change

• Cannot be null, must use options
 

• Accessing option values requires pattern 
matching

 

type 'a ref = { mutable contents: 'a }
let x = { contents = counter () }
;; x.contents <- counter ()

let y = { contents = Some (counter ())}
 ;; y.contents <- None

;; begin match y.contents with
| None -> failwith "NPE"
| Some c ->  c.inc ()

   end

Counter x = new Counter ();
x = new Counter ();

Counter y = new Counter ();
y = null;

y.inc();
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The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention of the null 
reference in 1965. … This has led to innumerable errors, 
vulnerabilities, and system crashes, which have probably caused a 
billion dollars of pain and damage in the last forty years. "

Sir Tony Hoare,  London 2009
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Smoothing the transition to Java

• General advice for the next few lectures: 
– Ask questions, but don’t stress about the details 
– Wait till you need them

• Java resources:
– Our lecture notes
– Ed and Java Bootcamp
– CIS 1100 website and textbook
– Online Java textbooks (http://math.hws.edu/javanotes/) linked from 

“Resources” on course website
18
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Java Core Language

differences between OCaml and Java



Structure of a Program

• All code lives in explicitly named 
classes. 

• Classes are types (of objects).
• Classes contain field declarations and 

method definitions.
• There is a single "entry point" of the 

program where it starts running, which 
must be a method called main.

• All code lives in (perhaps implicitly 
named) modules.

• Modules may import other modules 
and may contain multiple type 
definitions, let-bound value 
declarations, and top-level 
expressions.

• The program starts running at the 
beginning of a module and executes 
the definitions in the order that they 
are encountered.
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Expressions vs. Statements
• OCaml is an expression language 

– Every program phrase is an expression 
(and returns a value)

– The special value () of type unit is used as the result of expressions that are 
evaluated only for their side effects

– Semicolon is an operator that combines two expressions 
(where the left-hand one returns type unit)

• Java is a statement language 
– Two-sorts of program phrases: expressions (which compute values) and 

statements (which don’t)
– Statements are terminated by semicolons
– Any expression can be used as a statement (but not vice-versa)
– Some statements have expression variants (if, case)
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Types
• As in OCaml, every Java expression has a type
• The type describes the value that an expression computes

Expression form Example Type
Variable reference x Declared type of variable

Operator use 5 + x Result type of operation
Object creation new Counter () Class of the object
Method call c.inc() Return type of method

Equality test x == y boolean
Assignment x = 5 don’t use as an expression!!
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Type System Comparison
OCaml Java

primitive types
(values stored 
“directly” in the 
stack)

int, float, char, bool, … int, float, double, char, boolean, 
…

structured types 
(a.k.a. reference 
types — values 
stored in the heap)

tuples, datatypes, records, 
functions, arrays

(objects encoded as records 
of functions)

objects, arrays

(records, tuples, datatypes, 
strings, first-class functions are  
special cases of objects)

generics ‘a list List<A>
abstract types module types (signatures) interfaces, abstract classes,

public/private modifiers
23



Arithmetic & Logical Operators
OCaml Java

=, == == equality test
<>, != != inequality
>, >=, <, <= >, >=, <, <= comparisons
+ + addition
^ + string concatenation
- - subtraction (and unary minus)
* * multiplication
/ / division
mod % remainder (modulus)
not ! logical “not”
&& && logical “and” (short-circuiting)
|| || logical “or” (short-circuiting)
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New in Java: Operator Overloading

• The meaning of an operator in Java is determined by the types of the 
values it operates on:
– Integer division

4/3    ⇒ 1

– Floating point division
4.0/3.0 ⇒ 1.3333333333333333

– Automatic conversion from int to float, then float division
4/3.0  ⇒ 1.3333333333333333

• Method overloading is a general mechanism in Java 
– we’ll see more of it later
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Equality
• like OCaml, Java has two ways of testing reference types for 

equality:
– “reference equality” 

o1 == o2
– “deep equality”

o1.equals(o2)
• Normally, you should use == to compare primitive types and 

“.equals” to compare objects
• Careful: Single-equals (=) means assignment, not equality 

comparison

every object provides an “equals” 
method that should “do the right 
thing” depending on the class of 
the object
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Strings: immutable reference type
• String is a built in Java class
• Strings are sequences of (unicode) characters 
   ""   "Java"    "3 Stooges"    "富士山"
• + means String concatenation (overloaded)

"3" + " " + "Stooges" Þ "3 Stooges"
• Text in a String is immutable (like OCaml)

– but variables that store strings are not
– String x = "OCaml";
– String y = x;
– Immutability: can't do anything to x so that y changes

• The .equals method returns true when two strings contain the same 
sequence of characters 
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Aside: StringBuffers
• StringBuffer is a mutable Java String
• Alternative to "+" when constructing large strings  

StringBuffer sb = new StringBuffer("Hello");
for (int i=0; i<200; i++) {
  sb.append("!");  // modify end of sb
}
String s = sb.toString();  // convert back to String

String s = "Hello";
for (int i=0; i<200; i++) {
  s = s + "!";  
}
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What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200" ;
boolean ans = x.equals(z);

Answer: true
This is the preferred method of comparing strings!
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What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x1 = "CIS ";
String x2 = "1200";
String x = x1 + x2;
String z = "CIS 1200";
boolean ans = (x == z);

Answer: false
Even though x and z both contain the characters “CIS 1200”, 
they are stored in two different locations in the heap.
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What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200";
boolean ans = (x == z);

Answer: true(!)
Why? Since strings are immutable, two identical 
strings that are known when the program is compiled can be aliased by the 
compiler (to save space).
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Moral

Always use s1.equals(s2) to 
compare Strings!

Compare strings with respect to their content, 
not where they happen to be allocated in 
memory…
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Object Oriented Programming



Preview: The OO Style
• Core ideas:

– objects (state encapsulated with operations)
– dynamic dispatch (“receiver” of method 

call determines behavior)
– classes (“templates” for object creation)
– subtyping (grouping object types 

by common functionality)
– inheritance (creating new classes from existing ones)

• Good for:
– GUIs

• complex software systems that include many different 
implementations of the same “interface” (set of operations) 
with different behaviors

– Simulations
• designs with an explicit correspondence between “objects” in the 

computer and things in the real world 
– Games

encapsulated 
state

39



"Objects" in OCaml

(* The type of counter objects *)
type counter = {
    inc  : unit -> int;
    dec  : unit -> int;
}

(* Create a counter “object” *)
let new_counter () : counter =
  let r = {contents = 0} in 
  { 
    inc = (fun () -> 
      r.contents <- r.contents + 1;
      r.contents);
    dec = (fun () -> 
      r.contents <- r.contents - 1;
      r.contents) 
 }

Why is this an object?

§ Encapsulated local state  
only visible to the methods 
of the object

§ Object is defined by what it 
can do—local state does not 
appear in the interface

§ There is a way to construct 
new object values that 
behave similarly 
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OO terminology
• Object: a structured collection of encapsulated fields (aka instance 

variables) and methods
• Class: a template for creating objects
• The class of an object specifies…

– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object (methods)
– one or more constructors: create new objects by (1) allocating heap space, and 

(2) running code to initialize the object (optional, but default provided)
• Every (Java) object is an instance of some class

– Instances are created by invoking a constructor with the new keyword
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OO programming 

(and Python, C, C++, C#)

• Primitive notion of object creation 
(classes, with fields, methods and 
constructors)

• Flexibility through extension:
Subtyping allows related objects to 
share a common interface 

(part we've seen)

• Explicitly create objects using a record 
of higher order functions and hidden 
state

• Flexibility through composition: objects 
can only implement one interface
 

 

type button = 
    widget *
    label_controller *
  notifier_controller

class Button extends Widget {
  /* Button is a subtype
     of Widget */

} 
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public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

  public int dec () {
    r = r - 1;
    return r;
  } 
}

Objects in Java

instance variable

constructor

methods

class name
class declaration

public class Main {

 public static void
    main (String[] args) {

      Counter c = new Counter();

      System.out.println( c.inc() );
  
   }
}

constructor 
invocation

method call

object creation and use
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public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

  public int dec () {
    r = r - 1;
    return r;
  } 
}

Encapsulating local state

constructor and
methods can 
refer to r

public class Main {

 public static void
    main (String[] args) {

      Counter c = new Counter();

      System.out.println( c.inc() );
  
   }
}

method call

other parts of the 
program can only access 
public members

r is private
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Encapsulating local state 
• Visibility modifiers make the state local by controlling access
• Basically*:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

 

 *Java offers a couple of other protection levels — “protected” and “package protected” for structure larger code 
developments and libraries.  The details are not important at this point.
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public class Counter {

  private int r;

  public Counter (int r0) { 
    r = r0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

  public int dec () {
    r = r - 1;
    return r;
  } 
}

Constructors with Parameters

public class Main {

 public static void
    main (String[] args) {

      Counter c = new Counter(3);

      System.out.println( c.inc() );
  
   }
}

constructor 
invocation

Constructor methods can take 
parameters

object creation and use

Constructor must have the same 
name as the class
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• Declare a variable to hold a Counter object
– Type of the object is the name of the class that creates it

• Invoke the constructor for Counter to create a Counter 
instance with keyword "new" and store it in the variable

Counter c = new Counter();

Creating Objects
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Creating Objects
• Every Java variable is mutable

Counter c = new Counter(2);
c = new Counter(4);

Counter c = null;

☞ Remember! 
    Single = for assignment
                 Double == for reference equality testing

• A Java variable of reference type can also contain the special 
value “null”
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What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Raises NullPointerException

public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

}

Counter x;
x.inc();
int ans = x.inc();

Answer: NullPointerException
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What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. NullPointerException

public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

}

Counter x = new Counter();
x.inc();
Counter y = x;
y.inc();
int ans = x.inc();

Answer: 3
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