
Programming Languages
and Techniques

(CIS1200)

Lecture 21

Transition to Java

Chapters 19 & 20

• HW05: GUI programming
– Due: Tuesday at 11.59pm

• Java Bootcamp / Refresher: Wednesday, March 19
– 7-9pm, Towne 100
– Will be recorded
– Look for more details on Ed

• HW06: Pennstagram
– Java array programming
– Available on course website
– Due Tuesday, March 25th

• Midterm 2: Friday, March 28th
– OCaml: ASM, mutability, queues/deques, closures, GUI, and Java basics

Announcements

2

Goodbye OCaml…
…Hello Java!

CIS 1200 Semester Overview
• Declarative (Functional) programming

– persistent data structures
– recursion is main control structure
– frequent use of functions as data

• Imperative programming
– mutable data structures (that can be modified “in place”)
– iteration is main control structure

• Object-oriented and reactive programming
– mutable data structures / iteration
– heavy use of functions (objects) as data
– pervasive “abstraction by default”

OCaml

Java

6

Recap: The Functional Style
• Core ideas:

– immutable (persistent / declarative) data structures
– recursion (and iteration) over tree structured data
– functions as data
– generic types for flexibility (i.e. ‘a list)
– abstract types to preserve invariants (i.e. BSTs)
– simple model of computation (substitution)

• Good for:
– elegant descriptions of complex algorithms & data
– compositional design
– “symbol processing” programs

(compilers, theorem provers, etc.)
– reliable software / verification
– parallelism, concurrency, and distribution

7

Other Popular Functional Languages

F#: Most similar to OCaml,
Shares libraries with C# Haskell (CIS 5520)

Purity + laziness

Swift
iOS programming

Scala
Java / OCaml hybrid

Racket: LISP descendant;
widely used in education

8

Verse: Functional/Logic
language for unreal engine

Java and OCaml together

Xavier Leroy, one of the principal
designers of OCaml

Guy Steele, one of the
principal designers of Java

Moral: Java and OCaml are not so far apart…

me

10

Functional programming

• No primitive data structures, no tail
recursion

• Trees must be encoded by objects,
mutable by default, limited pattern
matching*

• First-class functions less common**,
objects instead

• Generic types***
• Abstract types through interfaces

and public/private modifiers

• Immutable lists primitive, tail
recursion

• Datatypes and pattern matching for
immutable tree structured data

• First-class functions, transform and
fold

• Generic types
• Abstract types through module

signatures

*feature of Java 17 (released 2021)
**late addition, encoded from objects
***not completely “first class” (see, e.g., Arrays) 11

OCaml vs. Java for FP
public abstract sealed class
 Tree<A extends Comparable<A>>
 permits Tree.Empty, Tree.Node {

 final static class
 Empty<A extends Comparable<A>> extends Tree<A> {}

 final static class
 Node<A extends Comparable<A>> extends Tree<A> {
 final A v;
 final Tree<A> lt;
 final Tree<A> rt;
 public Node(Tree<A> lt, A value, Tree<A> rt) {
 this.lt = lt; this.rt = rt; this.v = v;
 }

 public static <A extends Comparable<A>>
 boolean lookup(A x, Tree<A> t) {
 if (t instanceof Node<A> n) {
 return switch (x.compareTo(n.value)) {
 case -1 -> lookup(x, n.left);
 case 1 -> lookup(x, n.right);
 default -> n.value.equals(x);
 };
 } else {
 return false;
 }
 }
}

type 'a tree =
 | Empty
 | Node of ('a tree) * 'a * ('a tree)

let rec lookup (t:'a tree) (n:’a : bool =
 begin match t with
 | Empty -> false
 | Node(lt, x, rt) ->
 x = n ||
 if n < x then lookup lt n
 else lookup rt n
 end

OCaml provides a succinct, clean
notation for working with generic,
immutable, tree-structured data.
Java requires more "boilerplate."

12

Recap: The imperative style
• Core ideas:

– computation as change of state over time
– distinction between primitive and

reference values
– aliasing!
– linked data-structures and iteration

control structures
– generic types for flexibility (i.e., ‘a queue)
– abstract types to preserve invariants

(i.e., queue invariant)
– Abstract Stack Machine model of computation

• Good for:
– high performance, low-level code
– numerical simulations
– implicit coordination between components (queues, GUI)
– explicit interaction with hardware

interior of a pocket watch

13

Imperative programming

• Most types have a null element. Partial
functions can return null.

• Code is a sequence of statements that
have effects, sometimes using
expressions to compute values.

• References are mutable by default,
must be explicitly declared to be
constant

• No null. Partiality must be made
explicit with options.

• Code is an expression that has a value.
Sometimes computing that value has
other effects.

• References are immutable by default,
must be explicitly declared to be
mutable

14

Explicit vs. Implicit Partiality
 variables

• Can be assigned to after initialization

• Can always be null

• Check for null is implicit whenever a
variable is used

• If null is used as an object (i.e. for a method

call) then a NullPointerException occurs

 identifiers
• Cannot be changed once created; only

mutable fields can change

• Cannot be null, must use options

• Accessing option values requires pattern
matching

type 'a ref = { mutable contents: 'a }
let x = { contents = counter () }
;; x.contents <- counter ()

let y = { contents = Some (counter ())}
 ;; y.contents <- None

;; begin match y.contents with
| None -> failwith "NPE"
| Some c -> c.inc ()

 end

Counter x = new Counter ();
x = new Counter ();

Counter y = new Counter ();
y = null;

y.inc();

15

The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. … This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years. "

Sir Tony Hoare, London 2009

16

Smoothing the transition to Java

• General advice for the next few lectures:
– Ask questions, but don’t stress about the details
– Wait till you need them

• Java resources:
– Our lecture notes
– Ed and Java Bootcamp
– CIS 1100 website and textbook
– Online Java textbooks (http://math.hws.edu/javanotes/) linked from

“Resources” on course website
18

http://math.hws.edu/javanotes/

Java Core Language

differences between OCaml and Java

Structure of a Program

• All code lives in explicitly named
classes.

• Classes are types (of objects).
• Classes contain field declarations and

method definitions.
• There is a single "entry point" of the

program where it starts running, which
must be a method called main.

• All code lives in (perhaps implicitly
named) modules.

• Modules may import other modules
and may contain multiple type
definitions, let-bound value
declarations, and top-level
expressions.

• The program starts running at the
beginning of a module and executes
the definitions in the order that they
are encountered.

20

Expressions vs. Statements
• OCaml is an expression language

– Every program phrase is an expression
(and returns a value)

– The special value () of type unit is used as the result of expressions that are
evaluated only for their side effects

– Semicolon is an operator that combines two expressions
(where the left-hand one returns type unit)

• Java is a statement language
– Two-sorts of program phrases: expressions (which compute values) and

statements (which don’t)
– Statements are terminated by semicolons
– Any expression can be used as a statement (but not vice-versa)
– Some statements have expression variants (if, case)

21

Types
• As in OCaml, every Java expression has a type
• The type describes the value that an expression computes

Expression form Example Type
Variable reference x Declared type of variable

Operator use 5 + x Result type of operation
Object creation new Counter () Class of the object
Method call c.inc() Return type of method

Equality test x == y boolean
Assignment x = 5 don’t use as an expression!!

22

Type System Comparison
OCaml Java

primitive types
(values stored
“directly” in the
stack)

int, float, char, bool, … int, float, double, char, boolean,
…

structured types
(a.k.a. reference
types — values
stored in the heap)

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are
special cases of objects)

generics ‘a list List<A>
abstract types module types (signatures) interfaces, abstract classes,

public/private modifiers
23

Arithmetic & Logical Operators
OCaml Java

=, == == equality test
<>, != != inequality
>, >=, <, <= >, >=, <, <= comparisons
+ + addition
^ + string concatenation
- - subtraction (and unary minus)
* * multiplication
/ / division
mod % remainder (modulus)
not ! logical “not”
&& && logical “and” (short-circuiting)
|| || logical “or” (short-circuiting)

24

New in Java: Operator Overloading

• The meaning of an operator in Java is determined by the types of the
values it operates on:
– Integer division

4/3 ⇒ 1

– Floating point division
4.0/3.0 ⇒ 1.3333333333333333

– Automatic conversion from int to float, then float division
4/3.0 ⇒ 1.3333333333333333

• Method overloading is a general mechanism in Java
– we’ll see more of it later

25

Equality
• like OCaml, Java has two ways of testing reference types for

equality:
– “reference equality”

o1 == o2
– “deep equality”

o1.equals(o2)
• Normally, you should use == to compare primitive types and

“.equals” to compare objects
• Careful: Single-equals (=) means assignment, not equality

comparison

every object provides an “equals”
method that should “do the right
thing” depending on the class of
the object

27

Strings: immutable reference type
• String is a built in Java class
• Strings are sequences of (unicode) characters
 "" "Java" "3 Stooges" "富士山"
• + means String concatenation (overloaded)

"3" + " " + "Stooges" Þ "3 Stooges"
• Text in a String is immutable (like OCaml)

– but variables that store strings are not
– String x = "OCaml";
– String y = x;
– Immutability: can't do anything to x so that y changes

• The .equals method returns true when two strings contain the same
sequence of characters

28

Aside: StringBuffers
• StringBuffer is a mutable Java String
• Alternative to "+" when constructing large strings

StringBuffer sb = new StringBuffer("Hello");
for (int i=0; i<200; i++) {
 sb.append("!"); // modify end of sb
}
String s = sb.toString(); // convert back to String

String s = "Hello";
for (int i=0; i<200; i++) {
 s = s + "!";
}

29

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200" ;
boolean ans = x.equals(z);

Answer: true
This is the preferred method of comparing strings!

31

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x1 = "CIS ";
String x2 = "1200";
String x = x1 + x2;
String z = "CIS 1200";
boolean ans = (x == z);

Answer: false
Even though x and z both contain the characters “CIS 1200”,
they are stored in two different locations in the heap.

33

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200";
boolean ans = (x == z);

Answer: true(!)
Why? Since strings are immutable, two identical
strings that are known when the program is compiled can be aliased by the
compiler (to save space).

35

Moral

Always use s1.equals(s2) to
compare Strings!

Compare strings with respect to their content,
not where they happen to be allocated in
memory…

36

Object Oriented Programming

Preview: The OO Style
• Core ideas:

– objects (state encapsulated with operations)
– dynamic dispatch (“receiver” of method

call determines behavior)
– classes (“templates” for object creation)
– subtyping (grouping object types

by common functionality)
– inheritance (creating new classes from existing ones)

• Good for:
– GUIs

• complex software systems that include many different
implementations of the same “interface” (set of operations)
with different behaviors

– Simulations
• designs with an explicit correspondence between “objects” in the

computer and things in the real world
– Games

encapsulated
state

39

"Objects" in OCaml

(* The type of counter objects *)
type counter = {
 inc : unit -> int;
 dec : unit -> int;
}

(* Create a counter “object” *)
let new_counter () : counter =
 let r = {contents = 0} in
 {
 inc = (fun () ->
 r.contents <- r.contents + 1;
 r.contents);
 dec = (fun () ->
 r.contents <- r.contents - 1;
 r.contents)
 }

Why is this an object?

§ Encapsulated local state
only visible to the methods
of the object

§ Object is defined by what it
can do—local state does not
appear in the interface

§ There is a way to construct
new object values that
behave similarly

40

OO terminology
• Object: a structured collection of encapsulated fields (aka instance

variables) and methods
• Class: a template for creating objects
• The class of an object specifies…

– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object (methods)
– one or more constructors: create new objects by (1) allocating heap space, and

(2) running code to initialize the object (optional, but default provided)
• Every (Java) object is an instance of some class

– Instances are created by invoking a constructor with the new keyword

41

OO programming

(and Python, C, C++, C#)

• Primitive notion of object creation
(classes, with fields, methods and
constructors)

• Flexibility through extension:
Subtyping allows related objects to
share a common interface

(part we've seen)

• Explicitly create objects using a record
of higher order functions and hidden
state

• Flexibility through composition: objects
can only implement one interface

type button =
 widget *
 label_controller *
 notifier_controller

class Button extends Widget {
 /* Button is a subtype
 of Widget */

}

42

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Objects in Java

instance variable

constructor

methods

class name
class declaration

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

constructor
invocation

method call

object creation and use

43

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Encapsulating local state

constructor and
methods can
refer to r

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

method call

other parts of the
program can only access
public members

r is private

44

Encapsulating local state
• Visibility modifiers make the state local by controlling access
• Basically*:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

 *Java offers a couple of other protection levels — “protected” and “package protected” for structure larger code
developments and libraries. The details are not important at this point.

45

public class Counter {

 private int r;

 public Counter (int r0) {
 r = r0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Constructors with Parameters

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter(3);

 System.out.println(c.inc());

 }
}

constructor
invocation

Constructor methods can take
parameters

object creation and use

Constructor must have the same
name as the class

47

• Declare a variable to hold a Counter object
– Type of the object is the name of the class that creates it

• Invoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c = new Counter();

Creating Objects

48

Creating Objects
• Every Java variable is mutable

Counter c = new Counter(2);
c = new Counter(4);

Counter c = null;

☞ Remember!
 Single = for assignment
 Double == for reference equality testing

• A Java variable of reference type can also contain the special
value “null”

49

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Raises NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x;
x.inc();
int ans = x.inc();

Answer: NullPointerException

51

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x = new Counter();
x.inc();
Counter y = x;
y.inc();
int ans = x.inc();

Answer: 3

52

