
Programming Languages
and Techniques

(CIS1200)

Lecture 22

Java: Objects, Interfaces, Static methods
Chapters 19 & 20

• HW05: GUI programming
– Due: Tuesday at 11.59pm

• Java Bootcamp / Refresher: Wednesday, March 19
– 7-9pm, Towne 100
– Will be recorded
– Look for more details on Ed

• HW06: Pennstagram
– Java array programming
– Available on course website
– Due Tuesday, March 25th

• Midterm 2: Friday, March 28th
– OCaml: ASM, mutability, queues/deques, closures, GUI, and Java basics

Announcements

2

Object Oriented Programming

"Objects" in OCaml

(* The type of counter objects *)
type counter = {
 inc : unit -> int;
 dec : unit -> int;
}

(* Create a counter “object” *)
let new_counter () : counter =
 let r = {contents = 0} in
 {
 inc = (fun () ->
 r.contents <- r.contents + 1;
 r.contents);
 dec = (fun () ->
 r.contents <- r.contents - 1;
 r.contents)
 }

Why is this an object?

§ Encapsulated local state
only visible to the methods
of the object

§ Object is defined by what it
can do—local state does not
appear in the interface

§ There is a way to construct
new object values that
behave similarly

5

OO programming

(and Python, C, C++, C#)

• Primitive notion of object creation
(classes, with fields, methods and
constructors)

• Flexibility through extension:
Subtyping allows related objects to
share a common interface

(part we've seen)

• Explicitly create objects using a record
of higher order functions and hidden
state

• Flexibility through composition: objects
can only implement one interface

type button =
 widget *
 label_controller *
 notifier_controller

class Button extends Widget {
 /* Button is a subtype
 of Widget */

}

6

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Objects in Java

instance variable

constructor

methods

class name
class declaration

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

constructor
invocation

method call

object creation and use

7

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Encapsulating local state

constructor and
methods can
refer to r

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

method call

other parts of the
program can only access
public members

r is private

8

Encapsulating local state
• Visibility modifiers make the state local by controlling access
• Basically*:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

 *Java offers a couple of other protection levels — “protected” and “package protected” for structure larger code
developments and libraries. The details are not important at this point.

9

public class Counter {

 private int r;

 public Counter (int r0) {
 r = r0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Constructors with Parameters

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter(3);

 System.out.println(c.inc());

 }
}

constructor
invocation

Constructor methods can take
parameters

object creation and use

Constructor must have the same
name as the class

• Declare a variable to hold a Counter object
– Type of the object is the name of the class that creates it

• Invoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c = new Counter();

Creating Objects

12

Creating Objects
• Every Java variable is mutable

Counter c = new Counter(2);
c = new Counter(4);

Counter c = null;

☞ Remember!
 Single = for assignment
 Double == for reference equality testing

• A Java variable of reference type can also contain the special
value “null”

13

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises

NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x;
x.inc();
int ans = x.inc();

Answer: Program raises NullPointerException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises

NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x = new Counter();
x.inc();
Counter y = x;
y.inc();
int ans = x.inc();

Answer: 3

Interfaces

Working with objects abstractly

“Objects” in OCaml vs. Java
(* The type of “objects” *)
type point = {
 getX : unit -> int;
 getY : unit -> int;
 move : int*int -> unit;
}

(* Create an "object" with
 hidden state: *)
type position =
 { mutable x: int;
 mutable y: int; }

let new_point () : point =
 let r = {x = 0; y=0} in {
 getX = (fun () -> r.x);
 getY = (fun () -> r.y);
 move = (fun (dx,dy) ->
 r.x <- r.x + dx;
 r.y <- r.y + dy)
}

public class Point {

 private int x;
 private int y;

 public Point () {
 x = 0;
 y = 0;
 }
 public int getX () {
 return x;
 }
 public int getY () {
 return y;
 }
 public void move
 (int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Type is separate
from the implementation

Class specifies both type and
implementation of object values

O
Ca

m
l

Ja
va

Interfaces
• Give a type for an object based on how it can be used, not on how it was

constructed
• Describe a contract that objects must satisfy
• Example: Interface for objects that have a position and can be moved

public interface Displaceable {
 int getX();
 int getY();
 void move(int dx, int dy);
}

No fields, no constructors, no
method bodies!

public class Point implements Displaceable {
 private int x, y;
 public Point(int x0, int y0) {
 x = x0;
 y = y0;
 }
 public int getX() { return x; }
 public int getY() { return y; }
 public void move(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Implementing the interface
• A class that implements an interface provides appropriate definitions for the

methods specified in the interface
• The class fulfills the contract implicit in the interface

methods
required to
satisfy contract

interfaces
implemented

Another implementation

public class Circle implements Displaceable {
 private Point center;
 private int radius;
 public Circle(Point initCenter, int initRadius) {
 center = initCenter;
 radius = initRadius;
 }
 public int getX() { return center.getX(); }
 public int getY() { return center.getY(); }
 public void move(int dx, int dy) {
 center.move(dx, dy);
 }
} Delegation: move the

circle by moving the
center

Objects with different
local state can satisfy
the same interface

Yet another implementation

public class ColoredPoint implements Displaceable {
 private Point p;
 private Color c;
 public ColoredPoint (int x0, int y0, Color c0) {
 p = new Point(x0,y0);
 c = c0;
 }
 public void move(int dx, int dy) {
 p.move(dx, dy);
 }
 public int getX() { return p.getX(); }

 public int getY() { return p.getY(); }

 public Color getColor() { return c; }
}

Flexibility: Classes
may contain more
methods than
interface requires

Interfaces are types
• Can declare variables and method params with interface type

• Can call m with any Displaceable argument…

• ... but m can only operate on d according to the interface

void m (Displaceable d) { … }

obj.m(new Point(3,4));
obj.m(new ColoredPoint(1,2,Color.Black));

d.move(-1,1);
…
… d.getX() … ⇒ 0
… d.getY() … ⇒ 3

Using interface types
• Variables with interface types can refer, at run time, to objects of any class that

implements the interface
• Point and Circle are subtypes of Displaceable

Displaceable d0, d1, d2;
d0 = new Point(1, 2);
d1 = new Circle(new Point(2,3), 1);
d2 = new ColoredPoint(-1,1, red);
d0.move(-2,0);
d1.move(-2,0);
d2.move(-2,0);
…
… d0.getX() … ⇒ -1
… d1.getX() … ⇒ 0
… d2.getX() … ⇒ -3

The class that created the
object value determines
which move code is executed:
dynamic dispatch

i.e., run-time

Abstraction
The Displaceable interface gives us a single name for all the possible kinds of
“moveable things.” This allows us to write code that manipulates arbitrary
Displaceable objects, without caring whether it’s dealing with points or circles.

public class DoStuff {
 public void moveItALot (Displaceable s) {
 s.move(3,3);
 s.move(100,1000);
 s.move(1000,234651);
 }

 public void dostuff () {
 Displaceable s1 = new Point(5,5);
 Displaceable s2 = new Circle(new Point(0,0),100);
 moveItALot(s1);
 moveItALot(s2);
 }
}

Multiple interfaces

• An interface represents a point of view
 …and there can be multiple valid points of view on a given object

• Example: Geometric objects
– All can move (are Displaceable)
– Some have Color (are Colored)

Colored interface

• Contract for objects that that have a color
– Circles and Points don’t implement Colored
– ColoredPoints do

public interface Colored {
 public Color getColor();
}

ColoredPoints

public class ColoredPoint
 implements Displaceable, Colored {

 … // previous members

 private Color color;
 public Color getColor() {
 return color;
 }

 …
}

“Datatypes” in Java

type shape =
 | Point of …
 | Circle of …

let draw_shape (s:shape) =
 begin match s with
 | Point … -> …
 | Circle … -> …
 end

interface Shape {
 void draw();
}

class Point implements Shape {
 …
 public void draw() {
 …
 }
}

class Circle implements Shape {
 …
 public void draw() {
 …
 }
}

OCaml Java

Recap: OO terminology
• Object: A collection of related fields (or instance variables) and methods that

operate on those fields
• Instantiation: Every (Java) object is an instance of some class

– Instances are created by invoking a constructor with the new keyword

• Class: A template for creating objects, specifying
– types and initial values of fields
– code for methods

– optionally, a constructor that is run each time a new object is created from the class

• Interface: A “signature” for objects, describing a collection of methods that must be
provided by classes that implement the interface

• Object Type: Either a class or an interface (meaning “this object was created from a
class that implements this interface”)

Static Methods

Java Main Entry Point

• Program starts running at main
– args is an array of Strings (passed in from the command line)
– must be public
– returns void (i.e. is a command)

• What does static mean?

class MainClass {

 public static void main (String[] args) {
 …
 }

}

Static method example
public class Max {

 public static int max (int x, int y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
 }

 public static int max3(int x, int y, int z) {
 return max(max(x,y), z);
 }
} public class Main {

 public static void main (String[] args) {

 System.out.println(Max.max(3,4));
 return;
 }
}

closest analogue of top-level
functions in OCaml, but
must be a member of some class

Internally (within the
same class), call with just
the method name

Externally, prefix with
name of the class

main method must be
static; it is invoked to
start the program running

