
Programming Languages
and Techniques

(CIS1200)

Lecture 23

Static Methods, Java Arrays
Chapters 20, 21

Announcements

• HW06: Pennstagram
– Java array programming
– Available on course website
– Due Tuesday, March 25th

2

Midterm 2 Logistics

• Friday, March 28th, 2025
– During lecture: 1:45-2:45PM

• Location: Meyerson B1 (MEYH)
• Coverage: Chapters 1-24
• Format: 60 minutes; one handwritten, letter sized, single sided

sheet of notes allowed.
• Review Session:

Wednesday, March 26 from 7-9pm in Towne 100

Static Methods

Static method example
public class Max {

 public static int max (int x, int y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
 }

 public static int max3(int x, int y, int z) {
 return max(max(x,y), z);
 }
} public class Main {

 public static void main (String[] args) {

 System.out.println(Max.max(3,4));
 return;
 }
}

closest analogue of top-level
functions in OCaml, but
must be a member of some class

Internally (within the
same class), call with just
the method name

Externally, prefix with
name of the class

main method must be
static; it is invoked to
start the program running

Static Fields

Static vs. Dynamic Class Members
public class FancyCounter {
 private int c = 0;
 private static int total = 0;

 public int inc () {
 c += 1;
 total += 1;
 return c;
 }

 public static int getTotal () {
 return total;
 }
}
 FancyCounter c1 = new FancyCounter();

FancyCounter c2 = new FancyCounter();
int v1 = c1.inc();
int v2 = c2.inc();
int v3 = c1.getTotal();
System.out.println(v1 + " " + v2 + " " + v3);

Static Class Members
• Static methods can depend only on other static things

– Static fields and methods, from the same or other classes

• Static methods can create new objects and use them
– This is typically how main works

• public static fields are the "global" state of the program
– Mutable global state should generally be avoided
– Immutable global fields are useful for constants

public static final double PI = 3.14159265359793238462643383279;

Style: naming conventions

• Identifiers consist of alphanumeric characters and _ and cannot
start with a digit

• The larger the scope, the more informative the name should be
• Conventions are important: variables, methods and classes can

have the same name

Kind Part-of-
speech

Example

interface adjective Runnable
class noun RacingCar
field / variable noun initialSpeed
static final field
(constants)

noun MILES_PER_GALLON

method verb shiftGear

Why naming conventions matter
public class Turtle {
 private Turtle Turtle;
 public Turtle() { }

 public Turtle Turtle (Turtle Turtle) {
 return Turtle;
 }
}

Many more details on good Java style here:
http://www.seas.upenn.edu/~cis1200/current/java_style

Java Arrays

Working with static methods

Java Arrays: Indexing
• Arrays are sequentially ordered collections of values that can be indexed

directly (it takes the same time to access any position in the array)
• The first index is 0

• Basic array expression forms
 a[i] access element of array a at index i
 a[i] = e assign e to element of array a at index i
 a.length get the number of elements in a

Index must be in range:
a[20] or a[-1] triggers

ArrayIndexOutOfBoundsException

Array must be defined:
If a is null, then a[i] triggers

NullPointerException

Java Arrays: Creation
• Create an array a of size n with elements of type C, initialized with

default values (null for references, 0 for int, etc.)

• Create an array with given initial values

• When initializing a variable can omit new keyword and type

C[] a = new C[n];

C[] a = { new C(1), new C(2) };

C[] a = new C[] { new C(1), new C(2) };

Arrays and the Java ASM

• Arrays live in the heap; values with array type are references

int[] a = new int[4];
a[2] = 7;

Stack Heap

a int[]
length 4

0 0 7 0
length is a final
(immutable) field Array entries

are mutable

Stack binding
is mutable

Value tagged
with array type

Java Arrays: Aliasing

• Variables of array type are references and can be aliases

int[] a = new int[4];
int[] b = a;
a[2] = 7;
int ans = b[2];

Stack Heap

int[]
length 4

0 0 0 0

a

b
7

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 4
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {1, 2, 3, 4};
 int ans = a[a.length];

Answer: ArrayIndexOutOfBoundsException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = null;
 int ans = a.length;

Answer: NullPointerException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {};
 int ans = a.length;

Answer: 0

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {1, 2, 3, 4};
 int[] b = a;
 b[0] = 0;
 int ans = a[0];

Answer: 0

Array Iteration

for (int i = 0; i < a.length; i++) {
 total += a[i];
}

static int sum(int[] a) {
 int total = 0;
 for (int i = 0; i < a.length; i++) {
 total += a[i];
 }
 return total;
}

For loops
initialization

loop body

loop condition update

General pattern for computing info about an array

for (int x : a) {
 total += x;
}

static int sum(int[] a) {
 int total = 0;
 for (int x : a) {
 total += x;
 }
 return total;
}

For-each loops
element
declaration

loop body

array

Access all array elements in sequence

Note that this is "just" iteration –
no access to the array index!

int[] a = { 1, 2, 3 };
 int[] b = a;
 int[] c = new int[a.length];
 System.arraycopy(a,0,c,0,a.length);

 System.out.println(a == b);
 System.out.println(a == c);
 System.out.println(a.equals(b));
 System.out.println(a.equals(c));
 System.out.println(Arrays.equals(a,b));
 System.out.println(Arrays.equals(a,c));

Array Copy and Equality
• Use System.arraycopy to copy arrays
• Use Arrays.equals to compare arrays structurally

// true
// false
// true
// false
// true
// true

Copy data from array a to
array c, starting at position
0 in a and at position 0 in c.
Copy a.length elements.

Multidimensional Arrays

Multi-Dimensional Arrays

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},
 {"Smith", "Jones"}};

System.out.println(names[0][0] + names[1][0]);
// --> Mr. Smith
System.out.println(names[0][2] + names[1][1]);
// --> Ms. Jones

A 2-d array is just an array of arrays...

More brackets → more dimensions

String[][] just means (String[])[]
names[1][1] just means (names[1])[1]

Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
 products[col] = new int[col + 1];
 for (int row = 0; row <= col; row++) {
 products[col][row] = col * row;
 }
}

What would a Java ASM
stack and heap look like
after running this
program?

Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
 products[col] = new int[col + 1];
 for (int row = 0; row <= col; row++) {
 products[col][row] = col * row;
 }
}

0 0 0 0 0
1 2 3 4

4 6 8
9 12

16

products

Stack Heap
Note: This heap picture
is simplified – it omits the
class identifiers and
length fields for all 6 of
the arrays depicted.
(Contrast with the array
shown earlier.)

Note also that orientation
doesn’t matter on the heap.

Demo

ArrayDemo.java
ArrayExamples.java

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 33 in the Lecture Notes for more practice with
arrays

Object encapsulation
• All modification to the state of the object must be done using the object's own

methods.

• Use encapsulation to preserve invariants about the state of the object.

• Enforce encapsulation by not returning aliases from methods.

