Programming Languages
and Techniques
(C1S1200)

Lecture 23

Static Methods, Java Arrays
Chapters 20, 21

Announcements

* HWO06: Pennstagram
— Java array programming
— Available on course website
— Due Tuesday, March 25t

Midterm 2 Logistics

Friday, March 28", 2025
— During lecture: 1:45-2:45PM

Location: Meyerson B1 (MEYH)
Coverage: Chapters 1-24

Format: 60 minutes; one handwritten, letter sized, single sided
sheet of notes allowed.

Review Session:
Wednesday, March 26 from 7-9pm in Towne 100

Static method example

public class Max {

closest analogue of top-level
functions in OCaml, but

public|static| int max (int x, int y) {
must be a member of some class

if (x > y)
return Xx;
} else {
return y;
ks

}

public static int max3(int x, int y, int z) {
return max(max(x,y), z);

o/

Internally (within the
same class), call with just
the method name

main method must be
static; it is invoked to
start the program running

public class Main {

public static void main (String[] args) {

System.out.printin(Max.max(3,4));
return;
¥ Externally, prefix with

¥ name of the class

Static vs. Dynamic Class Members

public class FancyCounter {
private int c = 0;
private static int total = 0;

public int inc O {
c += 1;
total += 1;
return c;

}

public static int getTotal () {
return total;

}

¥ FancyCounter cl = new FancyCounter();
FancyCounter cZ = new FancyCounter();

int vl = cl.1incQ);

int vZ2 = c2.1ncQ);

int v3 = cl.getTotal(Q);

System.out.println(vl + " " + vZ + " " + v3);

Static Class Members

e Static methods can depend only on other static things
— Static fields and methods, from the same or other classes

e Static methods can create new objects and use them
— This is typically how main works

« public static fields are the "global" state of the program

— Mutable global state should generally be avoided
— Immutable global fields are useful for constants

public static final double PI = 3.14159265359793238462643383279;

Style: naming conventions

Kind Part-of- E]][C
speech
interface adjective Runnable
class noun RacingCar
field / variable noun initialSpeed
static final field noun MILES_PER_GALLON
(constants)
method verb shiftGear

* l|dentifiers consist of alphanumeric characters and _ and cannot
start with a digit

* The larger the scope, the more informative the name should be

* Conventions are important: variables, methods and classes can
have the same name

Why naming conventions matter

public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {
return Turtle;

}
¥

Many more details on good Java style here:
http://www.seas.upenn.edu/~cis1200/current/java_style

Working with static methods

Java Arrays: Indexing

e Arrays are sequentially ordered collections of values that can be indexed

directly (it takes the same time to access any position in the array)
* The firstindex is O

Element : !
First index (at index 8) Index must be in range:

a[20] or a[-1] triggers
ArraylndexOutOfBoundsException

123456 7\8 9= Indices

[1

<€—Array length is 10 > Array must be defined:
If a is null, then a[i] triggers
* Basic array expression forms NullPointerException

al1] access element of array a at index 1
a[i] = e assign e to element of array d at index 1
a.length get the number of elementsina

Java Arrays: Creation

* Create an array a of size n with elements of type C, initialized with
default values (null for references, 0 for int, etc.)

C[] a = new C[n];

* Create an array with given initial values

C[] a = new C[] { new C(1), new C(2) };

 When initializing a variable can omit hew keyword and type

C[] a ={ new C(1), new C(2) };

Arrays and the Java ASM

* Arrays live in the heap; values with array type are references

int[] a =new int[4];

al2]=7;
Stack Heap
Stack binding z@/\ int[]
is mutable length | 4

Array entries
are mutable

®||®‘||7

Value tagged
with array type

length is a final
(immutable) field

Java Arrays: Aliasing

* Variables of array type are references and can be aliases

int[] a = new 1int[4];
int[] b = a;
al2] = 7;
int ans = b[2];
Stack Heap

a E/_\ int[]
/) length | 4
0olo|7]0

23: What is the value of ans at the end of this program?

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a
int ans

{1, 2, 3, 4};
ala.length];

HwN -

. NullPointerException
. ArrayIndexOutOfBoundsException

oV WN -

Answer: ArraylndexOutOfBoundsException

23: What is the value of ans at the end of this program?

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a
int ans

null;
a.length;

S WN K-

. NullPointerException
. ArrayIndexOutOfBoundsException

oV WN -

Answer: NullPointerException

23: What is the value of ans at the end of this program?

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a
int ans

i};
a.length;

S WN K-

. NullPointerException
. ArrayIndexOutOfBoundsException

oV WN -

Answer: O

23: What is the value of ans at the end of this program?

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

lnt[] a = {1, 2, 3, 4}:
int[] b = a;
b[0] = 0;
int ans = a[0];
1.1
2.2
3.3
4.0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

Answer: O

For loops

initialization loop condition update

for (int 1 = 0; 1 < a.length; 1++) {
total += a[1];
¥

loop body

static int sum(int[] a) {
1nt total = 0;
for (int 1 = 0; 1 < a.length; 1++) {
total += a[1];
Iy

return total;

¥

General pattern for computing info about an array

For-each loops

element. array e |
declaration Note that this is "just" iteration —
. no access to the array index!
for (1int x : a) {
total += x; loop body

static int sum(int[] a) {
int total = 0;
for (int x : a) {
total += x;

h

return total;

Access all array elements in sequence

Array Copy and Equality

« Use System.arraycopy to copy arrays

« Use Arrays.equals to compare arrays structurally

int[] a
int[] b
1nt[] c

System.
System.
System.
System.
System.
System.

{1, 2, 3 };
a;
new intla.length];

System. arrqycqu(a 0,c,0,a.length);

out.println(a == b);
out.println(a == c);
out.printlnCa.equals(b));
out.printlnCa.equals(c));
out.println(Arrays. equals(a,b));
out.println(Arrays. equals(a,c));

Copy data from array a to
array ¢, starting at position

O in a and at position O in c.
Copy a.length elements.

// true
// false
// true
// false
// true
// true

Multi-Dimensional Arrays

A 2-d array is just an array of arrays...

Str'lngl::l[:l names = {{qul. n, "Mr'S. H, "MS. n},
{"Smith", "Jones"}};

System. out.printlnCnames[0][2] + names[1][0]);
// --> Mr. Smith

System. ovt.printlnCnames[0][2] + names[1][1]);
// --> Ms. Jones

String[][] justmeans (String[])[]
names[1][1] justmeans (names[1])[1]

More brackets > more dimensions

Multi-Dimensional Arrays

int[][] products = new 1int[5][];
for (int col = 0; col < 5; col++) {
products[col] = new int[col + 1];
for (int row = 0; row <= col; row++) {
products[col][row] = col * row;
Iy

What would a Java ASM

stack and heap look like
after running this
program?

Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
products[col] = new int[col + 1];
for (int row = 0; row <= col; row++)
products[col][row] = col * row;

{

¥
¥
Stack Heap
(///’—“‘\\a

products
R
2 (3 |4
4 |6 |8
9 |12
16

Note: This heap picture

is simplified — it omits the
class identifiers and
length fields for all 6 of
the arrays depicted.
(Contrast with the array
shown earlier.)

Note also that orientation
doesn’t matter on the heap.

ArrayDemo.java

ArrayExamples.java

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 33 in the Lecture Notes for more practice with
arrays

Object encapsulation

All modification to the state of the object must be done using the object's own
methods.

Use encapsulation to preserve invariants about the state of the object.

Enforce encapsulation by not returning aliases from methods.

