Programming Languages
and Techniques
(C1S1200)

Lecture 24

Java ASM, Subtyping and extension
Chapters 22 and 23

Announcements

* HWO06: Pennstagram

— Java array programming
— Due Tuesday (tomorrow) at 11.59pm

Midterm 2 Logistics

Friday, March 28", 2025

— During lecture: 1:45-2:45PM
— If you have a conflict, send email to cis1200@seas.upenn.edu ASAP

Location: Meyerson B1 (MEYH)
Coverage: Chapters 1-24

Format: 60 minutes; closed book, one handwritten, letter
sized, single sided sheet of notes allowed.

Review Session:
Wednesday, March 26 from 7-9pm in Towne 100

mailto:cis1200@seas.upenn.edu

The Java Abstract Stack Machine

Objects, Arrays, and Static Methods

Java Abstract Stack Machine

e Similar to OCaml Abstract Stack Machine
— Workspace (currently executing code)
— Stack (local variables, plus saved workspaces in method calls)
— Heap (values of reference types: arrays and objects)

* Key differences:
— Everything, including stack bindings, is mutable by default
— Arrays store type information and length
— Objects store what class was used to create them
— New component: Class table (coming soon)

Java Primitive Values

The values of these data types fit into one machine “word” (i.e. 64 bits)
and are stored directly in the stack.

byte 8-bit -128 to 127
short 16-bit integer -32768 to 32767
int 32-bit integer =231 to 231 - 1
long 64-bit integer =203 to 203 - 1
float 32-bit IEEE floating point

double 64-bit IEEE floating point

boolean true or false true false

char 16-bit unicode character 'a' 'b"' "\u@000'

Reference Values stored on the Heap

Arrays

* Type of the array
* Length

* Values for all array elements

int [Ja={0, 0, 7, 0 };

length never
length | 4 mutable;

olo]7]0 elements always
mutable

Objects

e Name of the class that

constructed it

* Values for all non-static fields

class Node {

private int elt;

private Node next;

elt 1
next null

fields may

or may not be
mutable
public/private not
tracked by ASM

What does the heap look like at the end of this program?

Counter[] b
a[@].1nc();

b[@].1nc();
int ans = a[@].incO;

Counter[] a = { new Counter(), new Counter() };

1 al@], a[l] };

public class Counter {
private int r;

public Counter () {
r=0;

}

public int inc () {
r=r + 1,
return r;

}

What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };

gEggfizg%)? 1 al@], a[l] }; public class Counter {

b[@].1nc();

int ans = a[@].1inc(); private int r;

public Counter () {

Stack Heap 1 =9

a [e Counter([] public int inc O {
r=r + 1;
return r;

}

Counter

24: What does the following program print?

0

public class Node {
public int elt;
public Node next;
public Node(int e@, Node n@) {
elt = e@;
next = n@;

}

}
public class Test {
public static void main(String[]

Node nl = new Node(1,null);
Node n2 = new Node(2,nl);
Node n3 = n2;

n3.next.next = n2;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;
System.out.printin(ni.elt);

args) {

NullPointerException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

What does the following program print?
1-9

or 10 for "NullPointerException"

public class Node {

public int elt;
public Node next;
public Node(int e@, Node n@) {
elt en;
next = no;

}

public class Test {
public static void main(String[] args) {

Node nl = new Node(l,null);
Node n2 = new Node(2,nl);
Node n3 = nZ;
n3.next.next = n2;
Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;
System.out.println(nl.elt);

Answer: 9

Workspace
Node nl = new Node(1,null);
Node n2 = new Node(2,nl);
Node n3 = n2;
n3.next.next = nZ;

Node n4
nZ.next.

= new Node(4,nl.next);
elt = 9;

Stack

Heap

Workspace Stack

:

Node n2 = new Node(2,nl);

Node n3 = nZ;

n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Note: we’re skipping details here about

how the constructor works. We’ll fill them in
next week. For now, assume the constructor
allocates and initializes the object in one step.

Heap
elt 1
hext null

Workspace

Node n2 = new Node(2,nl);

Node n3 = nZ;

n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

nl

Heap

elt

hext

null

VVorksgacgz"‘-\

N.O.d.LD.Z_=/;

Node n3 = nZ;

n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

nl

elt

hext

null

elt

hext

[~

Workspace

Node n3 = n2;
n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack Heap
5 Node
1
— elt
hext null

L//’ elt

hext

Workspace

n3.next.next = n2;
Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

nl

n2

Heap

n3

NS

elt

hext

elt

hext

.

Workspace
ninnd;nﬁiff::;?—V

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack Heap
nl /\ ode
1
— elt
hext null
n3
\//f elt 2

hext

Workspace
niJmnd;nﬁigsz;j—V

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack Heap
nl /\ Ode
— elt

hext
n3

k//’ elt

hext

Workspace

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack Heap
z ode
elt
n2
')rﬂ\ hext
n3

.

Workspacg™

n2.next.elt = 9;

N\

_»

Stack Heap
nl
elt
n2
‘)rﬂ\ hext
n3

elt

hext

elt

hext

Workspace

9;

Stack

nl

n2

n3

n4

—

Heap

elt

hext

_»

elt

hext

elt

hext

Stack

nl

n3

n4

k///’ elt
hext

elt

hext

elt

hext

Stack

nl

n3

n4

k///’ elt
hext

elt

hext

elt

hext

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 32 in the Lecture Notes for more practice with
arrays

Object encapsulation

» All modification to the state of the object must be done using the
object's own methods.

e Use encapsulation to preserve invariants about the state of the object.

* Enforce encapsulation by not returning aliases to mutable private data
from methods.

Encapsulation

public class C {
private 1int
private int[]
public int
public 1int[]

3;
={1, 2, 3 };
() { return x; }
(OO { return v; }

The instance variable
X is encapsulated --- it
can only be modified
by the class C.

The instance variable
y is not encapsulated.
Code in any class can
modify the values
stored in the array.

Quick Review:
Java Types and Interfaces

Review: Static Types

Types stop you from using values incorrectly

— 3 + true HOWEVER: in Java,
— (new Counter()).mQ) objects can have
All expressions have types multiple types....

— 3 + 4 hastype 1nt

— “A” .toLowerCase() hastype String

— new Counter() hastype Counter

How do we know if X.1nc() is correct? or X+3?
— depends on the type of X

Type restrictions preserve the types of variables

— assignment "x = 3" must be to values with compatible types
— methods "0.m(3)" must be called with compatible arguments

Interfaces

* Give a type for an object based on what it does, not on how it was
constructed

e Describes a contract that objects must satisfy

 Example: Interface for objects that have a position and can be moved

public interface Displaceable {
int getX(Q);
int getY(Q);
vold move(int dx, int dy);

¥

No fields, no constructors, no
method bodies!

Implementing the interface

* Aclass that implements an interface must provide appropriate definitions for the
methods specified in the interface

public class Point implements Displaceable {

private int x, y; \\\
public Point(int x@, int y@) {

X = x@; interfaces

y = y0; implemented
Iy
public int getX() { return x; }
public int getY() { return y; }

) public void move(int dx, int dy) {

required to

et act X = X + dx;
Satisty contrac o
yomact oy =y + dy;

¥
¥

methods

Another implementation

public class Circle implements Displaceable {

}

private Point center;

private int radius;

public Circle(int x, int y, int initRadius) {
Point center = new Point(x, y);
radius = initRadius;

Iy

public int getX() { return center.getX(); }

public int getY() { return center.getY(); }

public void move(int dx, int dy) {
center.move(dx, dy);

¥

Objects with different

local state can satisfy
the same interface

Implementing multiple interfaces

public interface Area {
public double getArea();
¥

public class Circle implements Displaceable, Area {

private Point center;
private int radius;
// constructor

// implementation of Displaceable methods

// new method
public double getArea() {

return Math.p1i * radius * radius;
by

Classes can implement
multiple interfaces by
including all of the
required methods

O
24: Assume Circle implements the Displaceable interface. The following snippet of code
typechecks:

True

0%

False

0%

// in class C

public static void moveItALot (Displaceable s) {
.. //omitted

}

.. // elsewhere
Circle ¢ = new Circle(new Point(10,10),10);
C.moveltAlot(c);

H Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Assume Circle implements the Displaceable interface.
The following snippet of code typechecks:

// in class C

public static void movelItALot (Displaceable s) {
.. //omitted

ks

.. // elsewhere
Circle ¢ = new Circle(new Point(10,10),10);
C.moveItAlot(c);

1. True
2. False

Answer: True

Subtyping

Definition: Type B can be declared to be a subtype of
type A if values of type B can do anything that values of
type A can do. Type A is called a supertype of B.

Example: A class that implements an interface declares
a subtyping relationship

Subtypes and Supertypes

* An interface represents a point of view about an object

* Classes can implement multiple interfaces

interfaces
Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

\ classes

Types can have many different supertypes / subtypes

Subtype Polymorphism*

* Key idea:

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

// 1in class C
public static void leapIt(Displaceable c) {
c.move(1000,1000);

}

// somewhere else
C.leapIt(new Circle (p, 10));

* If Bis asubtype of A, it provides all of A’s (public) methods

* Potential confusion: subtypes have more methods than supertypes.
(There are more objects that belong to the supertype than the subtype.)

*polymorphism = “many shapes”

Subtyping and Variables

* A avariable declared with type A can store any object that is a subtype
of A

Displaceable a = new Circle(new Point(2,3), 1);

N\ \

supertype of Circle subtype of Displaceable

 Methods with parameters of type A must be called with arguments that
are subtypes of A

Key Idea: Liskov’s Substitution Principle*

If S is a subtype of T, then an object of type T may be
replaced by an object of type S anywhere a T is
expected.

* without changing the properties of the program

*Named for Turing award winner and designer of the
influential OO language CLU, Barbara Liskov, who introduced
this idea in 1988.

Extension — More complex subtyping

Extension — More complex subtyping

Interface Extension — An interface that extends
another interface declares a subtype

Class Extension — A class that extends another
class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing interfaces.

public interface Displaceable {
int getX(Q);
int getY(Q);
void move(int dx, int dy);

}

public interface Area {
double getArea();

}

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();“\\\\\\\\\\\\\\\
}

The Shape type includes all the
methods of Displaceable and
Area, plus the new
getBoundingBox method.

Note the “extends” keyword.

Interface Hierarchy

Displaceable Area Elass Point implements Displaceable
\ / . // omitted
¥
class Circle implements Shape {
Shape . // omitted
! o X N ks
! - T~ class Rectangle implements Shape {
Point Circle Rectangle) // omitted

Shape is a subtype of both Displaceable and Area.

Circle and Rectangle are both subtypes of Shape; both are also subtypes of
Displaceable and Area by transitivity.

Note that one interface may extend several others.
— Interfaces do not necessarily form a tree, but the interface hierarchy cannot have any cycles.

Class Extension: “Inheritance”

e Classes, like interfaces, can extend one another.
— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all the fields and methods of its superclass
and may include additional fields or methods.

— Inheritance reflects an “is a” relationship between objects
(e.g., a Caris a Vehicle).

Simple Inheritance

* Insimple inheritance, the subclass only adds new fields or methods.

— It is also possible to replace (override) method definitions — we’ll come back to
this later

* Use simple inheritance to share common code among related classes.

 Example: Circle, and Rectangle have identical code for getX(), getY(), and
move() methods when implementing Displaceable.

Class Extension: Inheritance

public class DisplaceableImpl implements Displaceable {
private int x; private int y;
public DisplaceableImpl(int x, int y) { .. }
public int getX() { return x;}
public int getY() { return y; }
public void move(int dx, int dy) { x += dx; y += dy; }
¥

public class Circle extends DisplaceableImpl
implements Shape {

private int radius;

public Circle(Point pt, int radius) {
super(pt.getX(),pt.getY());
this.radius = radius;

¥

public double getArea() { .. }

public Rectangle getBoundingBox() { .. }

Subtyping with Inheritance

Displaceable Area

Shape

N 4
”

Point Circle Rectangle Type B is a subtype of A if B is reachable from A by
following zero or more edges upwards in the
hierarchy.

Extend L
ene * e.g. Circle is a subtype of Area, but Point is not

* Circle is also a subtype of itself

= = = = Implements

