
Programming Languages
and Techniques

(CIS1200)

Lecture 24

Java ASM, Subtyping and extension
Chapters 22 and 23

Announcements
• HW06: Pennstagram
– Java array programming
– Due Tuesday (tomorrow) at 11.59pm

2

Midterm 2 Logistics
• Friday, March 28th, 2025
– During lecture: 1:45-2:45PM
– If you have a conflict, send email to cis1200@seas.upenn.edu ASAP

• Location: Meyerson B1 (MEYH)
• Coverage: Chapters 1-24
• Format: 60 minutes; closed book, one handwritten, letter

sized, single sided sheet of notes allowed.
• Review Session:

Wednesday, March 26 from 7-9pm in Towne 100

mailto:cis1200@seas.upenn.edu

The Java Abstract Stack Machine

Objects, Arrays, and Static Methods

Java Abstract Stack Machine
• Similar to OCaml Abstract Stack Machine
– Workspace (currently executing code)
– Stack (local variables, plus saved workspaces in method calls)
– Heap (values of reference types: arrays and objects)

• Key differences:
– Everything, including stack bindings, is mutable by default
– Arrays store type information and length
– Objects store what class was used to create them
– New component: Class table (coming soon)

Java Primitive Values
The values of these data types fit into one machine “word” (i.e. 64 bits)
and are stored directly in the stack.

Type Description Values
byte 8-bit -128 to 127
short 16-bit integer -32768 to 32767
int 32-bit integer -231 to 231 - 1
long 64-bit integer -263 to 263 - 1
float 32-bit IEEE floating point
double 64-bit IEEE floating point
boolean true or false true false
char 16-bit unicode character 'a' 'b' '\u0000'

Reference Values stored on the Heap
Objects

• Name of the class that
constructed it

• Values for all non-static fields
 class Node {
 private int elt;
 private Node next;
 …
 }

Arrays

• Type of the array
• Length
• Values for all array elements
 int [] a = { 0, 0, 7, 0 };

Node
elt 1
next null

int[]
length 4

0 0 7 0

fields may
or may not be
mutable
public/private not
tracked by ASM

length never
 mutable;
elements always
 mutable

Objects on the ASM

What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
 Counter[] b = { a[0], a[1] };
 a[0].inc();
 b[0].inc();
 int ans = a[0].inc();

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Stack Heap

Counter
r 3

Counter
r 0

Counter[]
length 2

Counter[]
length 2

a

b

What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
 Counter[] b = { a[0], a[1] };
 a[0].inc();
 b[0].inc();
 int ans = a[0].inc();

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

public class Node {
 public int elt;
 public Node next;
 public Node(int e0, Node n0) {
 elt = e0;
 next = n0;
 }
}
public class Test {
 public static void main(String[] args) {
 Node n1 = new Node(1,null);
 Node n2 = new Node(2,n1);
 Node n3 = n2;
 n3.next.next = n2;
 Node n4 = new Node(4,n1.next);
 n2.next.elt = 9;
 System.out.println(n1.elt);
 }

}

What does the following program print?
1 – 9

or 10 for "NullPointerException"

Answer: 9

Workspace Stack Heap

Node n1 = new Node(1,null);
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Workspace Stack Heap

Node n1 = ;
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

Note: we’re skipping details here about
how the constructor works. We’ll fill them in
next week. For now, assume the constructor
allocates and initializes the object in one step.

Workspace Stack Heap

Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Workspace Stack Heap

Node n2 = ;
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

Workspace Stack Heap

Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2

Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2

n3

Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2

n3

Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Workspace Stack Heap

Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Workspace Stack Heap

Node n4 = ;
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

Workspace Stack Heap

n2.next.elt = 9; Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4

Workspace Stack Heap

n2.next.elt = 9; Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4

Workspace Stack Heap

n2.next.elt = 9; Node
elt 9

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 32 in the Lecture Notes for more practice with
arrays

Object encapsulation
• All modification to the state of the object must be done using the

object's own methods.

• Use encapsulation to preserve invariants about the state of the object.

• Enforce encapsulation by not returning aliases to mutable private data
from methods.

Encapsulation

public class C {

 private int x = 3;

 private int[] y = { 1, 2, 3 };

 public int getX() { return x; }

 public int[] getY() { return y; }

}

The instance variable
x is encapsulated --- it
can only be modified
by the class C.
The instance variable
y is not encapsulated.
Code in any class can
modify the values
stored in the array.

Quick Review:
Java Types and Interfaces

Review: Static Types
• Types stop you from using values incorrectly
– 3 + true
– (new Counter()).m()

• All expressions have types
– 3 + 4 has type int
– “A”.toLowerCase() has type String
– new Counter() has type Counter

• How do we know if x.inc() is correct? or x+3?
– depends on the type of x

• Type restrictions preserve the types of variables
– assignment "x = 3" must be to values with compatible types
– methods "o.m(3)" must be called with compatible arguments

HOWEVER: in Java,
objects can have
multiple types....

Interfaces
• Give a type for an object based on what it does, not on how it was

constructed
• Describes a contract that objects must satisfy
• Example: Interface for objects that have a position and can be moved

public interface Displaceable {
 int getX();
 int getY();
 void move(int dx, int dy);
}

No fields, no constructors, no
method bodies!

public class Point implements Displaceable {
 private int x, y;
 public Point(int x0, int y0) {
 x = x0;
 y = y0;
 }
 public int getX() { return x; }
 public int getY() { return y; }
 public void move(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Implementing the interface
• A class that implements an interface must provide appropriate definitions for the

methods specified in the interface

methods
required to
satisfy contract

interfaces
implemented

Another implementation

public class Circle implements Displaceable {
 private Point center;
 private int radius;
 public Circle(int x, int y, int initRadius) {
 Point center = new Point(x, y);
 radius = initRadius;
 }
 public int getX() { return center.getX(); }
 public int getY() { return center.getY(); }
 public void move(int dx, int dy) {
 center.move(dx, dy);
 }
} Objects with different

local state can satisfy
the same interface

Implementing multiple interfaces

public class Circle implements Displaceable, Area {
 private Point center;
 private int radius;
 // constructor
 // implementation of Displaceable methods

 // new method
 public double getArea() {
 return Math.pi * radius * radius;
 }

}

public interface Area {
 public double getArea();
}

Classes can implement
multiple interfaces by
including all of the
required methods

Assume Circle implements the Displaceable interface.
The following snippet of code typechecks:

1. True
2. False

// in class C
public static void moveItALot (Displaceable s) {
 … //omitted
}

… // elsewhere
Circle c = new Circle(new Point(10,10),10);
C.moveItAlot(c);

Answer: True

Subtyping

Definition: Type B can be declared to be a subtype of
type A if values of type B can do anything that values of
type A can do. Type A is called a supertype of B.

Example: A class that implements an interface declares
a subtyping relationship

 Displaceable Area supertypes

Point Circle Rectangle subtypes

Subtypes and Supertypes
• An interface represents a point of view about an object
• Classes can implement multiple interfaces

interfaces

classes

classes implement
interfaces

Types can have many different supertypes / subtypes

Subtype Polymorphism*
• Key idea:

• If B is a subtype of A, it provides all of A’s (public) methods
• Potential confusion: subtypes have more methods than supertypes.

(There are more objects that belong to the supertype than the subtype.)

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

*polymorphism = “many shapes”

// in class C
public static void leapIt(Displaceable c) {

c.move(1000,1000);
}
// somewhere else
C.leapIt(new Circle (p, 10));

Subtyping and Variables
• A a variable declared with type A can store any object that is a subtype

of A

• Methods with parameters of type A must be called with arguments that
are subtypes of A

Displaceable a = new Circle(new Point(2,3), 1);

subtype of Displaceablesupertype of Circle

Key Idea: Liskov’s Substitution Principle*

If S is a subtype of T, then an object of type T may be
replaced by an object of type S anywhere a T is
expected.
• without changing the properties of the program

*Named for Turing award winner and designer of the
influential OO language CLU, Barbara Liskov, who introduced
this idea in 1988.

Extension – More complex subtyping

Extension – More complex subtyping

Interface Extension – An interface that extends
another interface declares a subtype

Class Extension – A class that extends another
class declares a subtype

Interface Extension
• Build richer interface hierarchies by extending existing interfaces.

public interface Displaceable {
 int getX();
 int getY();
 void move(int dx, int dy);
}

public interface Area {
 double getArea();
}

public interface Shape extends Displaceable, Area {
 Rectangle getBoundingBox();
}

The Shape type includes all the
methods of Displaceable and

Area, plus the new
getBoundingBox method.

Note the “extends” keyword.

Interface Hierarchy

• Shape is a subtype of both Displaceable and Area.
• Circle and Rectangle are both subtypes of Shape; both are also subtypes of

Displaceable and Area by transitivity.
• Note that one interface may extend several others.

– Interfaces do not necessarily form a tree, but the interface hierarchy cannot have any cycles.

class Point implements Displaceable
{
 … // omitted
}
class Circle implements Shape {
 … // omitted
}
class Rectangle implements Shape {
 … // omitted
}

Displaceable Area

Shape

Point Circle Rectangle

Class Extension: “Inheritance”
• Classes, like interfaces, can extend one another.
– Unlike interfaces, a class can extend only one other class.

• The extending class inherits all the fields and methods of its superclass
and may include additional fields or methods.
– Inheritance reflects an “is a” relationship between objects

(e.g., a Car is a Vehicle).

Simple Inheritance
• In simple inheritance, the subclass only adds new fields or methods.
– It is also possible to replace (override) method definitions – we’ll come back to

this later

• Use simple inheritance to share common code among related classes.
• Example: Circle, and Rectangle have identical code for getX(), getY(), and

move() methods when implementing Displaceable.

Class Extension: Inheritance
public class DisplaceableImpl implements Displaceable {
 private int x; private int y;
 public DisplaceableImpl(int x, int y) { … }
 public int getX() { return x;}
 public int getY() { return y; }
 public void move(int dx, int dy) { x += dx; y += dy; }
}

public class Circle extends DisplaceableImpl
 implements Shape {
 private int radius;
 public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}
public double getArea() { … }
public Rectangle getBoundingBox() { … }

}

Subtyping with Inheritance

Displaceable Area

Shape

Point Circle Rectangle

DisplaceableImpl

Extends

Implements

Type B is a subtype of A if B is reachable from A by
following zero or more edges upwards in the
hierarchy.
• e.g. Circle is a subtype of Area, but Point is not
• Circle is also a subtype of itself

