
Programming Languages
and Techniques

(CIS1200)

Lecture 25

Java ASM, dynamic dispatch
Chapters 23 & 24

Midterm 2 Logistics
• Friday, March 28th, 2025
– During lecture: 1:45-2:45PM
– If you have a conflict, send email to cis1200@seas.upenn.edu ASAP

• Location: Meyerson B1 (MEYH)
• Coverage: Chapters 1-24
• Format: 60 minutes; closed book, one handwritten, letter

sized, single sided sheet of notes allowed.
• Review Session:

Wednesday, March 26 from 7-9pm in Towne 100

mailto:cis1200@seas.upenn.edu

The Java Abstract Stack Machine

Objects, Arrays, and Static Methods

Java Abstract Stack Machine
• Similar to OCaml Abstract Stack Machine
– Workspace (currently executing code)
– Stack (local variables, plus saved workspaces in method calls)
– Heap (values of reference types: arrays and objects)

• Key differences:
– Everything, including stack bindings, is mutable by default
– Arrays store type information and length
– Objects store what class was used to create them
– New component: Class table (today)

OOooooo

OO
Subtypes

programmingOOooooo

Subtyping

Definition: Type B can be declared to be a subtype of
type A if values of type B can do anything that values of
type A can do. Type A is called a supertype of B.

Example: A class that implements an interface declares
a subtyping relationship

Subtyping relationships are explicitly declared in Java

Key Idea: Liskov’s Substitution Principle*

If B is a subtype of A, then an object of type A may be
replaced with an object of type B anywhere an A is
expected.
• without changing the properties of the program

*Named for Turing award winner and designer of the
influential OO language CLU, Barbara Liskov, who introduced
this idea in 1988.

Subtyping and Variables
• A a variable declared with type A can store any object that is a subtype

of A

• Methods with parameters of type A must be called with arguments that
are subtypes of A

Displaceable a = new Circle(new Point(2,3), 1);

subtype of Displaceablesupertype of Circle

// in class C
public static void leapIt(Displaceable a) { a.move(10,10); }

C.leapIt(new Circle (new Point(2,3), 1));

subtype of Displaceable

supertype of Circle

 Displaceable Area supertypes

Point Circle Rectangle subtypes

Subtypes and Supertypes
• A class that implements an interface declares that the class is a subtype of the

interface

interfaces

classes

classes implement
interfaces

Types can have many different supertypes / subtypes

Interface Hierarchy

• Shape is a subtype of both Displaceable and Area.
• Circle and Rectangle are both subtypes of Shape; both are also subtypes of

Displaceable and Area by transitivity.
• Note that one interface may extend several others.

– Interfaces do not necessarily form a tree, but the interface hierarchy cannot have any cycles.

class Point implements Displaceable
{
 … // omitted
}
class Circle implements Shape {
 … // omitted
}
class Rectangle implements Shape {
 … // omitted
}

Displaceable Area

Shape

Point Circle Rectangle

Class Extension: “Inheritance”
• Classes, like interfaces, can extend one another.
– Unlike interfaces, a class can extend only one other class.

• The extending class inherits all the fields and methods of its superclass
and may include additional fields or methods.
– Should reflect an “is a” relationship between objects (e.g., a Car is a Vehicle)

public class Vehicle {
 private int x; private int y;
 public void go() { … update x … }
}

public class ElectricCar extends Vehicle {
 public void charge() { … }
}

Simple Inheritance
• In simple inheritance, the subclass only adds new fields or methods.
– It is also possible to replace (override) method definitions – we’ll see this later

• Use simple inheritance to share common code among related classes.
• Example: Circle, and Rectangle have identical code for getX(),
getY(),and move() when implementing Displaceable

public class DisplaceableImpl implements Displaceable {
 private int x; private int y;
 public DisplaceableImpl(int x, int y) { … }
 public int getX() { return x;}
 public int getY() { return y; }
 public void move(int dx, int dy) { x += dx; y += dy; }
}

Class Extension: Inheritance
public class DisplaceableImpl implements Displaceable {
 private int x; private int y;
 public DisplaceableImpl(int x, int y) { … }
 public int getX() { return x;}
 public int getY() { return y; }
 public void move(int dx, int dy) { x += dx; y += dy; }
}

public class Circle extends DisplaceableImpl
 implements Shape {
 private int radius;
 public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}
public double getArea() { … }
public Rectangle getBoundingBox() { … }

}

Subtyping with Inheritance

Displaceable Area

Shape

Point Circle Rectangle

DisplaceableImpl

Extends

Implements

Type B is a subtype of A if B is reachable from A by
following zero or more edges upwards in the
hierarchy.
• e.g. Circle is a subtype of Area, but Point is not
• Circle is also a subtype of itself

Example of Simple Inheritance

See: Shapes.zip

• Constructors are not inherited
– Instead, each subclass constructor should invoke a constructor of the

superclass using the keyword super
– Super must be the first line of the subclass constructor

• If the parent class constructor takes no arguments, it is OK to omit the
explicit call to super (it will be supplied automatically)

Inheritance: Constructors

public Circle(Point pt, int radius) {
 super(pt.getX(),pt.getY());
 this.radius = radius;
}

Class Object
public class Object {
 boolean equals(Object o) {
 … // test for equality
 }
 String toString() {
 … // return a string representation
 }
 … // other methods omitted
}

• Object is the root of the class tree
– Classes with no “extends” clause implicitly extend Object
– Arrays also implement the methods of Object
– The Object class provides methods useful for all objects to support

• Object is the top (i.e., “most super”) type in the subtyping hierarchy

Recap

Displaceable Area

Shape

Point Circle Rectangle

Object

DisplaceableImpl

Extends

Implements
Subtype by fiat

interfaces
classes (form a tree)

- Interfaces extend (possibly many) interfaces
- Classes implement (possibly many) interfaces
- Classes (except Object) extend exactly one
 other class (Object by default)
- Interface types (and arrays) are subtypes “by
fiat” of Object

Other forms of inheritance
• Java has other features related to inheritance

(some of which we will discuss later in the course):
– A subclass might override (re-implement) a method already found in the superclass.
– A class might be abstract – i.e., it does not provide implementations for all of its methods (its

subclasses must provide them instead)

• These features are tricky to use properly, and the need for them arises only in
somewhat special cases
– Designing complex, reusable libraries
– Special methods like equals and toString

• We recommend avoiding all forms of inheritance (even “simple inheritance”)
whenever possible: use interfaces and composition instead

 Especially: Avoid method overriding except using it is part of a well-known
"contract" of the design: easy to violate Liskov substitution principle

Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes
• The static type of an expression is a type that describes what we know about the

expression at compile-time (without thinking about the execution of the program)
Displaceable x;

• The dynamic class of an object is the class that it was created from at run time
x = new Point(2,3)

• In OCaml, we had only static types
• In Java, we also have dynamic classes because of objects

– The dynamic class will always be a subtype of its static type
– The dynamic class determines what methods are run

Static type vs. Dynamic type

1. Area
2. Circle
3. None of the above
4. Not well typed

What is the static
type of a1 on line A?

Area

public Area asArea (Area a)
 { return a; }
…

Point p = new Point(5,5);
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

Static type vs. Dynamic class

1. Area
2. Circle
3. None of the above
4. Not well typed

What is the dynamic
class of a1 when
execution reaches A?

Circle

public Area asArea (Area a)
 { return a; }
…

Point p = new Point(5,5);
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

Static type vs. Dynamic class

1. Area
2. Circle
3. Either of the above
4. Not well typed

What type could we
declare for x (in blank
B)?

Area

public Area asArea (Area a)
 { return a; }
…

Point p = new Point(5,5);
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?

What code runs in a method call?
What is ‘this’?

ASM refinement: The Class Table
Workspace Stack Heap

…

Class Table

ASM refinement: The Class Table

public class Counter {
 private int x;
 public Counter () { x = 0; }
 public void incBy(int d) { x = x + d; }
 public int get() { return x; }
}

public class Decr extends Counter {
 private int y;
 public Decr (int initY) { y = initY; }
 public void dec() { incBy(-y); }
}

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

The class table contains:
• the code for each method,
• references to each class’s parent, and
• the class’s static members.

this
• Inside a non-static method, the identifier this is an immutable

reference to the object on which the method was invoked.
• References to local fields and methods have an implicit “this.” in

front of them.

class C {
 private int f;

 public void copyF(C other) {
 this.f = other.f;
 }
}

this C
f 0

Stack Heap

…
…

…

An Example

public class Counter {
 private int x;
 public Counter () { x = 0; }
 public void incBy(int d) { x = x + d; }
 public int get() { return x; }
}

public class Decr extends Counter {
 private int y;
 public Decr (int initY) { y = initY; }
 public void dec() { incBy(-y); }
}

// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

…with Explicit this and super
public class Counter extends Object {
 private int x;
 public Counter () { super(); this.x = 0; }
 public void incBy(int d) { this.x = this.x + d; }
 public int get() { return this.x; }
}

public class Decr extends Counter {
 private int y;
 public Decr (int initY) { super(); this.y = initY; }
 public void dec() { this.incBy(-this.y); }
}

// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

Constructing an Object
Workspace Stack Heap

Decr d = new Decr(2);
d.dec();
int x = d.get();

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Allocating Space on the Heap
Workspace Stack Heap

super();
this.y = initY;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Invoking a constructor:
• allocates space for a new object
 in the heap
• includes slots for all fields of all
 ancestors in the class tree
 (here: x and y)
• creates a pointer to the class –
 this is the object’s dynamic type
• runs the constructor body after
 pushing parameters and this
 onto the stack

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Note: fields start with a
“sensible” default
 - 0 for numeric values
 - null for references

Calling super
Workspace Stack Heap

super();
this.y = initY;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Call to super:
• The constructor (implicitly) calls
 the super constructor
• Invoking a
 method or constructor pushes the
 saved workspace, the method
 params (none here) and a new
 this pointer.

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Abstract Stack Machine
Workspace Stack Heap

super();
this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

(Running Object’s default
constructor omitted.)

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assigning to a Field
Workspace Stack Heap

this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assignment into the this.x field
goes in two steps:
 - look up the value of this in the
 stack
 - write to the “x” slot of that
 object.

Assigning to a Field
Workspace Stack Heap

 .x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assignment into the this.x field
goes in two steps:
 - look up the value of this in the
 stack
 - write to the “x” slot of that
 object.

Done with the call
Workspace Stack Heap

;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Done with the call to “super”, so
pop the stack to the previous
workspace.

Continuing
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Continue in the Decr class’s
constructor.

this.y = initY;

Abstract Stack Machine
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

this.y = 2;

Assigning to a field
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

this.y = 2;

Assignment into the this.y
field.

(This really takes two steps as we
saw earlier, but we’re skipping
some for the sake of brevity…)

Done with the call
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

;

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the this pointer).

Returning the Newly Constructed Object
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Continue executing the program.

Decr d = ;
d.dec();
int x = d.get();

Allocating a local variable
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Allocate a stack slot for the local
variable d. Note that it’s mutable…
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes
and just assume the contents can
be modified.

d.dec();
int x = d.get();

d

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This is an example of dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

 .dec();
int x = d.get();

Search through the
methods of the Decr,
class trying to find one
called dec.

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments
(none in this case).

this.incBy(-this.y);
_;
int x = d.get();

this

d

Reading a Field’s Contents
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

Read from the y slot of the object.

this.incBy(- .y);
_;
int x = d.get();

this

d

Dynamic Dispatch, Again
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

 .incBy(-2);
_;
int x = d.get();

this

Search through the
methods of the Decr
class looking for one
called incBy.
If the search fails,
recursively search the
parent classes.

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the incBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed – Java’s static type system
ensures this.

d

Running the body of incBy
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x 0

y 2

this.x = this.x + d;
_;
int x = d.get();

this

It takes a few steps…
Body of incBy:
 - reads this.x
 - looks up d
 - computes result this.x + d
 - stores the answer (-2) in this.x

_;

d -2

this

this.x = -2;

-2

d

After a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x -2

y 2

int x = d.get();

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again…

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr

x -2

y 2

Done! (Phew!)

x -2

Summary: this and dynamic dispatch
• When object’s method is invoked, as in o.m(), the code that runs is

determined by o’s dynamic class.
– The dynamic class, represented as a pointer into the class table, is included in the

object structure in the heap
– If the method is inherited from a superclass, determining the code for m might

require searching up the class hierarchy via pointers in the class table
– This process of dynamic dispatch is the heart of OOP!

• Once the code for m has been determined, a binding for this is
pushed onto the stack.
– The this pointer is used to resolve field accesses and method invocations inside

the code.

Inheritance Example

public class Counter {
 private int x;
 public Counter () { x = 0; }
 public void incBy(int d) { x = x + d; }
 public int get() { return x; }
}
class Decr extends Counter {
 private int y;
 public Decr (int initY) { y = initY; }
 public void dec() { incBy(-y); }
}
// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

What is the value of x
at the end of this
computation?

1. -2
2. -1
3. 0
4. 1
5. 2
6. NPE
7. Doesn't type

checkAnswer: -2

Static members and the Java ASM

Static Members
• Classes in Java can also act as containers for code and data.
• The modifier static means that the field or method is associated with the class

and not instances of the class.

class C {
 public static int x = 23;
 public static int someMethod(int y) { return C.x + y; }
 public static void main(String args[]) {
 …
 }
}

 // Elsewhere:
C.x = C.x + 1;
C.someMethod(17);

Access to the static member uses the class name
C.x or C.foo()

You can do a static assignment
to initialize a static field.

Based on your understanding of ‘this’, is it possible to
refer to ‘this’ in a static method?

1. No
2. Yes
3. I’m not sure

Example of Statics
• The java.lang.Math library provides static fields/methods for many common arithmetic operations:

• Math.PI == 3.141592653589793
• Math.sin, Math.cos
• Math.sqrt
• Math.pow
• etc.

Class Table Associated with C
• The class table entry for
C has a field slot for x.

• Updates to C.x modify
the contents of this
slot: C.x = 17;

• A static field is a global variable
– There is only one heap location for it (in the class table)
– Modifications to such a field are visible everywhere the field is

• if the field is public, this means everywhere
– Use with care!

C
extends Object
static x 23
static int someMethod(int y) {
return x + y; }
static void main(String args[])
{…}

Static Methods (Details)
• Static methods do not have access to a this pointer
– Why? There isn’t an instance to dispatch through!
– Therefore, static methods may only directly call other static methods.
– Similarly, static methods can only directly read/write static fields.
– Of course, a static method can create instance of objects (via new) and then

invoke methods on those objects.

• Gotcha: It is possible (but confusing) to invoke a static method as
though it belongs to an object instance.
– e.g. o.someMethod(17) where someMethod is static

