Programming Languages
and Techniques
(C1S1200)

Lecture 26

Static Methods, Generics
Chapters 24 and 25

Announcements

e HWO7: PennPals

— Programming with Java Collections
— Available soon
— Due Tuesday, April 8 at 11.59pm

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?
What code runs in a method call?
What is ‘this’?

ASM refinement: The Class Table

Workspace Stack Heap Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
¥

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

X + d; }

The class table contains:
* the code for each method,
* references to each class’s parent, and
* the class’s static members.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec){incBy(-y);}

u

26: What is the value of x at the end of this computation?

public class Counter {
private int x;
public Counter QO { x =0

public void incBy(int d) { x = x + d; }
public int get() { return x; }

class Decr extends Counter {
private int y;

public Decr (int initY) { y = initY; }

public void dec() { incBy(-y); }

// .. somewhere in main:
Decr d = new Decr(2);
d.dec(Q);

int x = d.get();

NullPointerException

Doesn't type check

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

70

Inheritance Example

public class Counter {
private int x;
public Counter (O { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}
class Decr extends Counter { What is the value of x
private int y; :
public Decr (int initY) { y = inity; }| 2t theend Of?th's
public void dec() { incBy(-y); } computation:
}
// .. somewhere in main: 1. -2
Decr d = new Decr(2); 2. -1
d.decQ); 3.0
int x = d.getQ); 4.1
5. 2
6. NPE
7. Doesn't type
check

Answer: -2

Static members and the Java ASM

Static Members

* (Classes in Java can also act as containers for code and data.

e The modifier static means that the field or method is associated with the class
and not instances of the class.

You can do a static assignment

class C { . toinitialize a static field
public static int x = 23;
public static int someMethod(int y) { return C.x + y,; }
public static void main(String args[]) {

}
}
// Elsewhere:
C.x = C.x + 1; } Access to the static member uses the class name
C.someMethod(17); C.xorC.foo()

Class Table Associated with C

* The class table entry for C
« Updates to C.Xx modify static x 23
the contents of this stgtic int som;Method(int y) {
. _ . return x + y;
slot: C.x = 17, static void main(String args[])
{.}

e A static field is a global variable

— There is only one heap location for it (in the class table)
— Modifications to such a field are visible everywhere the field is

* if the field is public, this means everywhere

— Use with care!

26: Based on your understanding of this, is it possible to refer to this in a static method? 20

No

0%
Yes

0%
I'm not sure

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Based on your understanding of ‘this’, is it possible to
refer to ‘this’ in a static method?

1. No
2. Yes
3. I'm not sure

Static Methods (Details)

* Static methods do not have access to a this reference
— Why? There isn’t an instance to dispatch through!
— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course a static method can create instance of objects (via new) and then
invoke methods on those objects.

e Gotcha: It is possible (but confusing) to invoke a static method as
though it belongs to an object instance.

— e.g. 0.someMethod(17) where someMethod is static

Subtype Polymorphism

VS.

Parametric Polymorphism

Review: Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that is
a subtype of A can be provided.

 Why is this ok? If B is a subtype of A, it provides all of A’s (public)
methods.

*polymorphism = many shapes

Is subtype
polymorphism
enough?

Mutable Queue Interface in OCaml

module type QUEUE =
sig
(* type of the data structure *)
type 'a queue
(* Make a new, empty queue *)
val create : unit -> 'a queue
(* Add a value to the end of the queue *)
val eng : 'a -> 'a queue -> unit
(* Remove the front value and return it (if any) *)
val deq : 'a queue -> ‘a
(* Determine if the queue 1s empty *)
val is_empty : ‘a queue -> bool

How can we
end

translate this

interface to Java?

Java Interface using Subtyping

module type QUEUE = interface ObjQueue {
sig

type 'a queue
// no constructors

val create : unit -> 'a queue // 1n an interface
val enqg : 'a -> 'a queue -> unit public void enq(Object elt);
val deq : 'a queue -> 'a public Object deq();
val is_empty : 'a queue -> bool public boolean isEmpty();
end
¥

OCaml Java

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

}
ObjQueue g = ..; What type should we write for A?
q.enq(" CIS 120 "); 1. String
—-A-— X =q.deq(); 2. Object
3. ObjQueue

4. None of the above

ANSWER: Object

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

h

ObjQueue q = ..; trim is a method of the
’ String class (removes

q.enq(" CIS 120 "); extra spaces)

Object x = q.deq(Q);
System.out.println(x.trim());| < Does thisline type check

1. Yes

2. No

3. It depends

ANSWER: No

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

}

ObjQueue gq = ..; What type for B?
q.enq(" CIS 120 "); 1. Point
Object x = qg.deq(); 2. Object
g.eng(new Point(0.0,0.0)); 3. ObjQueue

B = g.de ;
y g q0 4. None of the above

ANSWER: Object

Parametric Polymorphism (a.k.a. Generics)

e Main idea:

Parameterize a type (i.e. interface or class) by another type.

public interface Queue<E> {
void enq(E o);

E deqQ);
boolean isEmpty();

}

* Any implementation of the generic interface cannot depend on the implementation
details of the parameter E.

— i.e., the implementation of enq cannot invoke any methods on ‘0’
(except those inherited from Object)

— i.e., the only thing we know about E is that it is a subtype of Object

Generics (Parametric Polymorphism)

public interface Queue<E> {
void enq(E o0);

E deqQ);
boolean isEmpty();

Queue<String> q = ..;

g.enq(" CIS 120 ");

String x = gq.deq(); // What type of x? String
System.out.println(x.trim()); // Is this valid? Yes!
g.eng(new Point(0.0,0.0)); // Is this valid? No!

|

Subtyping and Generics*

Queue<String> gs =
Queue<Object> qgo

go.enq(new Object(
String s = gs.deq(

new QueueImpl<>(); 0k?
gs; Ok?
)); Ok?
); Ok?

Java generics are invariant:

Sure!
Let’s see..

I guess
Noooo!

— Subtyping of arguments to generic types does not imply subtyping between instantiations:

Object

String

but...

Queue<Object>

Hardest part to
learn about
generics and
subtyping...

Queue<String>

* Subtyping and generics interact in other ways too. Java supports bounded
polymorphism and wildcard types, but those are beyond the scope of CIS 1200.

u

27: Subtyping with Generics

1
2
Which of these are true, assuming that class Queuelmpl<E>
implements interface Queue<E>?
1. Queuelmpl<Queue<String>> is a subtype of 3
Queue<Queue<String>>
2. Queue<Queuelmpl<String>> is a subtype of
Queue<Queue<String>>
3. Both 4
4. Neither

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

70

Subtyping and Generics

Which of these are true, assuming that class Queuelmpl<E>
implements interface Queue<E>?

1. Queuelmpl<Queue<String>> is a subtype of
Queue<Queue<String>>

2. Queue<Queuelmpl<String>> is a subtype of
Queue<Queue<String>>

3. Both
4. Neither

Answer: 1

Other subtleties with Generics

* Unlike OCaml, Java classes and methods can be generic only with respect to
reference types.
— Not possible to do: Queue<int>
— Must instead do: Queue<Integer>

e Java Arrays cannot be generic
— Not possible:

class C<E> {
E[] genericArray;
public C() {

genericArray = new E[];

}

}

