
Programming Languages
and Techniques

(CIS1200)

Lecture 28

Overriding, Equality, Iteration
Chapters 25 and 26

Announcements
• HW07: PennPals

– Programming with Java Collections
– Due Tuesday, April 8th at 11.59pm

• Midterm 2 results available after class
– View scores on Gradescope, solutions on website
– Submit regrade requests in the next two weeks
– Use letter grade chart to interpret your performance
– My OH next week are by appointment only (see Ed to schedule)

4

≤ 35 (35, 50] (50, 65] (65, 80] (80, 95] (95, 110] > 110
0

5

10

15

20

25

30

35

40

CIS 1200 25sp Midterm 2

Median: 81/120
Max: 119

A range: 80-120
B range: 65-80
C range: 50-65
D range: 35-50
F range: < 35

import java.util.*;

class Point {
 private final int x, y;

public Point(int x0, int y0) { x = x0; y = y0; }
public int getX(){ return x; }
public int getY(){ return y; }

}

public class TreeSetDemo {
public static void main(String[] args) {

Set<Point> s = new TreeSet<>();
 s.add(new Point(1,1));
 }
}

Review: Comparable

Exception in thread "main" java.lang.ClassCastException:
 Point cannot be cast to java.base/java.lang.Comparable
at java.base/java.util.TreeMap.compare(TreeMap.java:1291)
at java.base/java.util.TreeMap.put(TreeMap.java:536)
at java.base/java.util.TreeSet.add(TreeSet.java:255)
at TreeSetDemo.main(TreeSetDemo.java:14)

RUNTIME
ERRROR

import java.util.*;

class Point implements Comparable<Point> {
 private final int x, y;

public Point(int x0, int y0) { x = x0; y = y0; }
public int getX(){ return x; }
public int getY(){ return y; }

public int compareTo(Point o) {
 if (this.x < o.x) {
 return -1;
 } else if (this.x > o.x) {
 return 1;
 } else if (this.y < o.y) {
 return -1;
 } else if (this.y > o.y) {
 return 1;
 }
 return 0;
 }
}

Adding Comparable to Point

Point p1 = new Point(0,1);
Point p2 = new Point(0,2);
p1.compareTo(p2); // -1
p2.compareTo(p1); // 1
p1.compareTo(p1); // 0

Digging Deeper into Comparable

It is strongly recommended (though not required) that natural
orderings be consistent with equals. This is so because sorted sets
(and sorted maps) without explicit comparators behave
"strangely" when they are used with elements (or keys) whose
natural ordering is inconsistent with equals. In particular, such a
sorted set (or sorted map) violates the general contract for set (or
map), which is defined in terms of the equals method.

How do we change the definition of equals?

Equality
A case study in overriding

Consider this example
public class Point {
 private final int x;
 private final int y;
 public Point(int x, int y) { this.x = x; this.y = y; }
 public int getX() { return x; }
 public int getY() { return y; }
}

// somewhere in main…
List<Point> l = new LinkedList<Point>();
l.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

What gets printed to the console?

1. true
2. false

Why?

Answer: 2

Overriding Example
class C {

 public void printName() {
 System.out.println("I'm a " + getName());
 }

 public String getName() {
 return "C";
 }
}

class E extends C {

 public String getName() {
 return "E";
 }
}

// in main
C c = new E();
c.printName();

What gets printed to the console?

1. I’m a C
2. I’m a E
3. NullPointerException

Answer: I’m a E

How to override equals

*See the very nicely written article “How to write an Equality Method in Java” by Oderski, Spoon, and
Venners (June 1, 2009) at http://www.artima.com/lejava/articles/equality.html

The contract for equals
The equals method implements an equivalence relation on non-null object references:
• It is reflexive: for any non-null reference value x, x.equals(x) should return true.
• It is symmetric: for any non-null reference values x and y, x.equals(y) should

return true if and only if y.equals(x) returns true.
• It is transitive: for any non-null reference values x, y, and z,

if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should
return true.

• It is consistent: for any non-null reference values x and y, multiple invocations
of x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) should return false.

Directly from https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

First attempt
public class Point {

 private final int x;
 private final int y;

 public Point(int x, int y) { this.x = x; this.y = y; }
 public int getX() { return x; }
 public int getY() { return y; }

 public boolean equals(Point that) {
 return (this.x == that.x &&
 this.y == that.y);
 }

}

Got’cha: overloading, vs. overriding
public class Point {
 …
 // overloaded, not overridden
 public boolean equals(Point that) {
 return (this.x == that.x &&
 this.y == that.y);
 }
}
Point p1 = new Point(1,2);
Point p2 = new Point(1,2);
Object o = p2;
System.out.println(p1.equals(o));
// prints false!
System.out.println(p1.equals(p2));
// prints true!

The type of equals as declared in Object is:
 public boolean equals(Object o)
The implementation above takes a Point not an Object!

Overriding equals, take two

Properly overridden equals

• Use the @Override annotation when you intend to override a method
so that the compiler can warn you about accidental overloading
– modern IDEs such as IntelliJ will automatically add/suggest these

annotations
• Now what? How do we know whether the o is even a Point?
– We need a way to check the dynamic type of an object

public class Point {
 …
 @Override
 public boolean equals(Object o) {
 // what do we do here???
 }
}

Type Casts
• We can test whether o is a Point using instanceof

• Use a type cast: (Point) o
– At compile time: the expression (Point) o has type Point.
– At runtime: check whether the dynamic type of o is a subtype of Point, if so evaluate to o,

otherwise raise a ClassCastException
– As with instanceof, use casts judiciously – i.e. almost never. Instead use generics.

@Override
 public boolean equals(Object o) {
 boolean result = false;
 if (o instanceof Point) {
 // o is a point - how do we treat it as such?
 }
 return result;
 }

Check whether o
is a Point

Refining the equals implementation

@Override
public boolean equals(Object o) {
 boolean result = false;
 if (o instanceof Point) {
 Point that = (Point) o;
 result = (this.x == that.x &&
 this.y == that.y);
 }
 return result;
}

This cast is
guaranteed to

succeed.

What about subtypes?

“dynamic cast” or “type cast”
“downcast” or “coercion”

Suppose we define a subclass of Point
public class ColoredPoint extends Point {
 private final int color;
 public ColoredPoint(int x, int y, int color) {
 super(x,y);
 this.color = color;
 }

 @Override
 public boolean equals(Object o) {
 boolean result = false;
 if (o instanceof ColoredPoint) {
 ColoredPoint that = (ColoredPoint) o;
 result = (this.color == that.color &&
 super.equals(that));
 }
 return result;
 }
}

This version of
equals is suitably

modified to
check the color

field too.

Keyword super is
used to invoke

overridden methods.

Broken Symmetry

• The problem arises because we mixed Points and ColoredPoints,
but ColoredPoints have more data that allows for finer
distinctions.

• Should a Point ever be equal to a ColoredPoint?

Point p = new Point(1,2);
ColoredPoint cp = new ColoredPoint(1,2,17);
System.out.println(p.equals(cp));
 // prints true
System.out.println(cp.equals(p));
 // prints false

Java Reflection: getClass
• To correctly account for subtyping, we need the classes of the two objects to match

exactly.
• instanceof only lets us ask about the subtype relation
• How do we access the dynamic class?

Class<T>
extends

// no public constructor

….

D
extends

D() { … }

void printName(){…}

Object
String toString(){…

boolean equals…

Class<?> getClass() { … }

Class TableWorkspace Stack Heap

c.getClass(); Dc

The o.getClass() method returns an object that
represents o's dynamic class.

Reference equality == on class values correctly
checks for class equality (i.e. there is only ever
one object that represents each class).

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) {
 return false;
 }
 Point point = (Point) o;
 return {
 x == point.x && y == point.y;
 }
}

Correct Implementation: Point
Check whether o is a

Point

The class cast expression "(T)e" is a runtime test of the dynamic class of of e.
If T is not a subtype of the dynamic class, then a ClassCastException is thrown.
The static type of the expression "(T)e" is T.

“dynamic cast” or “type cast”
“downcast” or “coercion”

Compatibility with compareTo
• For classes that implement the Comparable<E> interface, the equals and compareTo

methods should agree:
– o.compareTo(p) == 0 exactly when o.equals(p)

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) {
 return false;
 }
 Point point = (Point) o;
 return (this.compareTo(point) == 0);

}

Can implement equals by
using compareTo.

Overriding Equality in Practice
• IntelliJ can autogenerate equality methods of the kind we

developed.
– But you need to specify which fields should be taken into account.
– and you should know why some comparisons use == and some use

.equals

• Whenever you override equals you must also override hashCode in a
compatible way
– hashCode is used by the HashSet and HashMap collections
– Forgetting to do this can lead to puzzling bugs!

When to override equals?
• In classes that represent immutable values

– String already overrides equals
– The Point class is a good candidate

• When there is a “logical” notion of equality
– The collections library overrides equality for Sets

(e.g. two sets are equal if and only if they contain equal elements)

• Whenever instances of a class might need to serve as elements of a set
or as keys in a map
– The collections library uses equals internally to define set membership and key

lookup
– (This is the problem with the example code)

When not to override equals
• When each instance of a class is inherently unique

– Often the case for mutable objects (since its state might change, the only
sensible notion of equality is identity)

– Classes that represent “active” entities rather than data (e.g. threads, gui
components, etc.)

• When a superclass already overrides equals and provides the correct
functionality.
– Usually the case when a subclass is implemented by adding only new methods,

but not fields

How to prevent overriding
• By default, methods can be overridden in subclasses.
• The final modifier changes that.
• Final methods cannot be overridden in subclasses

– Prevents subclasses from changing the “behavioral contract” between methods
by overriding

– static final methods cannot be hidden

• Similar, but not the same as final fields and local variables:
– Act like the immutable name bindings in OCaml
– Must be initialized (either by a static initializer or in the constructor) and cannot

thereafter be modified.
– static final fields are useful for defining constants (e.g. Math.PI)

