
Programming Languages
and Techniques

(CIS1200)

Lecture 30

Exceptions and Java I/O
Chapter 28

Announcements

• HW08: ChatterBot
– Released soon; due on Thursday, April 17th

– Practice with I/O and Collections

4

HW9: Game Project

5

HW9: Game project
• Game Design Proposal Milestone Due: (8 points)

Tuesday, April 15th at Midnight = 11:59PM!
– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback

• Final Program Due: (92 points)
 Tuesday, April 29th at 11:59pm
– Submit zipfile online, submission only checks if your code compiles
– IntelliJ is strongly recommended for this project
– You may distribute your game (after the deadline) if you do not use any of our code

• Grade based on demo with your TA during/after reading days
– Grading rubric on the assignment website
– Recommendation: don’t be too ambitious.

• NO LATE SUBMISSIONS PERMITTED
6

Review: Exceptions

Exceptions
• Exceptions are just objects that affect control flow:
• Raise an exception with:

throw new ExceptionType();
– aborts the current execution context (workspace)
– "unwinds" the stack, searching for a matching catch block

• Handle exceptions using try/catch:
try { /* code */ }
catch (ExceptionType e) { /* handler */ }
– runs code
– if code raises an exception that is a subtype of ExceptionType, intercept its stack unwinding and

run the handler

Simplified Example

What happens if we do (new C()).foo() ?
1. Program stops without printing anything
2. Program prints “here in bar”, then stops
3. Program prints “here in bar”, then “here in foo”, then stops
4. Something else

class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {
 this.baz();
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
}

Answer: 1 or 4* (*depending on whether you count stderr as "printing")

Catching the Exception

Now what happens if we do (new C()).foo();?

class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {

try {
this.baz();

} catch (Exception e) { System.out.println("caught"); }
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
}

Console
caught
here in bar
here in foo

Finally

• A finally clause of a try/catch/finally statement always
gets run, regardless of whether there is no exception, a
propagated exception, or a caught exception.

try {
 ...
} catch (Exn1 e1) {
 ...
} catch (Exn2 e2) {
 ...
} finally {
 ...
}

Using Finally
class C {
 public void foo() {
 this.bar();
 System.out.println("here in foo");
 }
 public void bar() {
 try {
 this.baz();

} catch (Exception e) {
System.out.println("caught");

 } finally { System.out.println("finally"); }
 System.out.println("here in bar");
 }
 public void baz() {
 throw new RuntimeException();
 }
 } What happens if we do (new C()).foo() ?

1. Program prints only "finally"
2. Program prints "here in bar", then "here in foo", then "finally"
3. Program prints "finally", then "caught", then "here in foo"
4. Program prints "caught", then "finally", then "here in bar", then

"here in foo"

Answer: 4

Exception Class Hierarchy

RuntimeException

Exception Error

Object

Throwable

IllegalArgumentException

IOException

Type of all
throwable objects.

Other subtypes of
Exception must be

declared.

Subtypes of
RuntimeException
do not have to be

declared.

Fatal Errors: should
never be caught.

FileNotFoundException

Checked (Declared) Exceptions
• Exceptions that are subtypes of Exception but not RuntimeException are called checked or

declared.
• A method that might throw a checked exception must declare it using a “throws” clause in the

method type.
• The method might raise a checked exception either by:

– directly throwing such an exception

– or by calling another method that might itself throw a checked exception

public void doSomeIO (String file) throws IOException {
 Reader r = new FileReader(file); // might throw
 …

public void maybeDoIt (String file) throws AnException{
 if (…) throw new AnException(); //directly throw
 …

Unchecked (Undeclared) Exceptions
• Subclasses of RuntimeException do not need to be declared via “throws”

– even if the method does not explicitly handle them.
• Many “pervasive” types of errors cause RuntimeExceptions

– NullPointerException
– IndexOutOfBoundsException
– IllegalArgumentException

• The original intent was that such exceptions represent disastrous conditions from
which it was impossible to sensibly recover…

public void mightFail (String file) {
 if (file.equals(“dictionary.txt”) {
 // file could be null!
 …

Declared vs. Undeclared?
• Tradeoffs in the software design process:
• Declared: better documentation

– forces callers to acknowledge that the exception exists
• Undeclared: fewer static guarantees (compiler can help less)

– but, much easier to refactor code

• In practice: test-driven development encourages “fail early/fail often” model
of code design and lots of code refactoring, so “undeclared” exceptions are
prevalent.

• A reasonable compromise:
– Use declared exceptions for libraries, where the documentation and usage enforcement

are critical
– Use undeclared exceptions in client code to facilitate more flexible development

Good Style for Exceptions
• In Java, exceptions should be used to capture exceptional circumstances
– Try/catch/throw incur performance costs and complicate reasoning about the

program, don’t use them when better solutions exist

• Re-use existing exception types when they are meaningful to the
situation
– e.g. use NoSuchElementException when implementing a container

• Define your own subclasses of Exception if doing so can convey useful
information to possible callers that can handle the exception.

Good Style for Exceptions
• It is often sensible to catch one exception and re-throw a different (more

meaningful) kind of exception.
– e.g., when implementing WordScanner (in upcoming lectures), we catch IOException and

throw NoSuchElementException in the next method.

• Catch exceptions as near to the source of failure as makes sense
– i.e., where you have the information to deal with the exception

• Catch exceptions with as much precision as you can
 BAD: try {…} catch (Exception e) {…}

BETTER: try {…} catch (IOException e) {…}

java.io

Viewing sequential data as a stream

I/O Streams
• The stream abstraction represents a communication channel with the outside

world.
– can be used to read or write a potentially unbounded number of data items (unlike a list)
– data items are read from or written to a stream one at a time

• The Java I/O library uses subtyping to provide a unified view of disparate data
sources and sinks.

Low-level Streams
• At the lowest level, a stream is a sequence of binary numbers

• The simplest IO classes break up the sequence into 8-bit chunks, called bytes. Each
byte corresponds to an integer in the range 0 – 255.

11000101001011101011011010101010100101…..

197 46 182 170

InputStream and OutputStream
• Abstract classes that provide basic operations for the Stream class hierarchy:

• These operations read and write int values that represent bytes
range 0-255 represents a byte value
-1 represents “no more data” (when returned from read)

• java.io provides many subclasses for various sources/sinks of data:
files, audio devices, strings, byte arrays, serialized objects

• Subclasses also provides rich functionality:
encoding, buffering, formatting, filtering

int read (); // Reads the next byte of data
void write (int b); // Writes the byte b to the output

Binary IO example
InputStream fin = new FileInputStream(filename);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

BufferedInputStream
• Reading one byte at a time can be slow!
• Each time a stream is read there is a fixed overhead, plus time proportional to the

number of bytes read.*
– disk -> operating system -> JVM -> program

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

• A BufferedInputStream presents the same interface to clients, but internally
reads many bytes at once into a buffer (incurring the fixed overhead only once)

 disk -> operating system
 ->>>> JVM -> program
 JVM -> program
 JVM -> program
 JVM -> program

*simplified explanation – the OS, disk, etc., might use caching to speed things up

Rule of thumb times to access data:
 actual for intuition

 CPU: 0.5ns (~ 1 sec)
 RAM: 100 ns (~ 1.6 minutes)
 SSD: 150,000 ns (~ 2.75 days)

Buffering Example
FileInputStream fin1 = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(fin1);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

The Standard Java Streams
java.lang.System provides an InputStream and two standard PrintStream
objects for doing console I/O.

System.in

System.err

System.out

Note that System.in, for example, is a static member of the class System – this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.

PrintStream Methods

Note the use of overloading: there are multiple methods called println
• The compiler figures out which one you mean based on the number of arguments, and/or the static

type of the argument you pass in at the method’s call site.
• The java I/O library uses overloading of constructors pervasively to make it easy to “glue together”

the right stream processing routines

void println(boolean b); // write b followed by a new line
void println(String s); // write s followed by a newline
void println(); // write a newline to the stream

void print(String s); // write s without terminating the line
 (output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

PrintStream adds buffering and binary-conversion methods to
OutputStream

Character based IO
A character stream is a sequence of 16-bit binary numbers

The character-based IO classes break up the sequence into 16-bit chunks, of type char.
Each character corresponds to a letter (specified by a character encoding).

0000010010100011011011010101010100101…..

\u0251 \uB6AA

593 46,762

‘a’

Reader and Writer
• Similar to the InputStream and OutputStream classes, including:

• These operations read and write int values that represent unicode characters
– read returns an integer in the range 0 to 65535 (i.e., 16 bits)
– value -1 represents “no more data” (when returned from read)
– requires an “encoding” (e.g., UTF-8 or UTF-16, set by a Locale)

• Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.
– use these for portable text I/O

• Gotcha: System.in, System.out, System.err are byte streams
– So, wrap in an InputStreamReader / PrintWriter if you need unicode console I/O

int read (); // Reads the next character
void write (int b); // Writes the char to the output

Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)

