Programming Languages
and Techniques
(C1S1200)

Lecture 31

/0 & Histogram Demo
Chapter 28




Announcements

e HWO0S: ChatterBot

— Available now; due on Thursday, April 17t
— Practice with 1/O and Collections

e Game Design Proposal Milestone Due: (8 points)
Tuesday, April 15" at Midnight = 11:59PM!

— (Should take about 1 hour)
— Submit on GRADESCOPE

— TAs will give you feedback




Announcements

* TA position applications are available
— CIS 1100, 1200, 1600, 1210 (see link on Ed)
— Other CIS classes (see https://www.cis.upenn.edu/ta-information/)
— Accepting applications until Friday, April 18th
— Intro CIS TA Panel: April 14th 7-8:30pm, Berger Auditorium



https://www.cis.upenn.edu/ta-information/

Viewing sequential data as a stream



/O Streams

The stream abstraction represents a communication channel with the outside
world.

— can be used to read or write a potentially unbounded number of data items (unlike a list)
— data items are read from or written to a stream one at a time

The Java I/0 library uses subtyping to provide a unified view of disparate data
sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ...ACCTGAACTCAT...




Low-level Streams

* At the lowest level, a stream is a sequence of binary numbers

| J \ J \ J \ ) >

197 46 182 170

* The simplest 10 classes break up the sequence into 8-bit chunks, called bytes. Each
byte corresponds to an integer in the range 0 — 255.




Binary IO example

InputStream fin = new FileInputStream(filename);

int[ ][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
ks
data[j][1] = ch;
ks
by

fin.close();




BufferedinputStream

Reading one byte at a time can be slow

number of bytes read.*
— disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

Each time a stream is read there is a fixed overhead, plus time proportional to the

 ABufferedInputStream presents the same interface to clients, but internally
reads many bytes at once into a buffer (incurring the fixed overhead only once)

disk -> operating system
->>>> JVM -> program
JVM -> program

JVM -> program

JVM -> program

Rule of thumb times to access data:

actual for intuition
CPU: 0.5ns (~ 1 sec)
RAM: 100 ns (~ 1.6 minutes)
SSD: 150,000 ns (~ 2.75 days)

*simplified explanation — the OS, disk, etc., might use caching to speed things up




Buffering Example

FileInputStream finl = new FileInputStream( filename);

InputStream fin = new BufferedInputStream(finl);

int[][] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.readQ);
if (ch = -1) {
fin.close(Q);
throw new IOException("File ended early");
}
data[j][1] = ch;
}
}

fin.close();




The Standard Java Streams

java.lang.System provides an InputStream and two standard PrintStream
objects for doing console I/0.

System.out
System.in

standard input (keyboard)

[ >| Application

standard output (display)

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “1n” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.




PrintStream Methods

PrintStream adds buffering and binary-conversion
methods to OutputStream

void println(boolean b); // write b followed by a new line
void println(String s); // writesfollowed by a newline

void printlnQ); // write a newline to the stream
void print(String s); // write s without terminating the line

(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

 Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments,
and/or the static type of the argument you pass in at the method’s call site.

— The java I/0 library uses overloading of constructors pervasively to make it easy to “glue
together” the right stream processing routines




Character based 10

A character stream is a sequence of 16-bit binary numbers

| J \ J >

I I

593 46,762
\u0251 \UB6AA
lal ::
=3
=il

The character-based 10 classes break up the sequence into 16-bit chunks, of type char.
Each character corresponds to a letter (specified by a character encoding).




Reader and Writer

Similar to the InputStream and OutputStream classes, including:

int read ); // Reads the next character
void write (int b); // Writes the char to the output

These operations read and write 1nt values that represent unicode characters
— read returns an integer in the range 0 to 65535 (i.e., 16 bits)
— value -1 represents “no more data” (when returned from read)
— requires an “encoding” (e.g., UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer Subclasses also
provides rich functionality.

— use these for portable text I/O
Gotcha: System.in, System.out, System.err are byte streams

— So, wrap in an InputStreamReader / PrintWriter if you need unicode console 1/0




Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)




Problem Statement

Write a program that, given a filename for a text file as input, calculates the
frequencies (i.e., number of occurrences) of each distinct word of the file. The
program should then print the frequency distribution to the console as a sequence of
“word: freq” pairs (one per line).

Histogram result:

The: 1 each:1 line: 2 should : 1
Write : 1 file : 2 number : 1 text: 1
a4 filename : 1 occurrences : 1 that : 1
as:?2 for:1 of : 4 the : 4
calculates : 1 freq: 1 one:1 then: 1
command : 1 frequencies : 1 pairs : 1 to:1
console : 1 frequency : 1 per:1 word : 2
distinct : 1 given : 1 print: 1

distribution : 1 il program : 2

e:1l input: 1 sequence: 1







Decompose the problem

* Sub-problems:

1. How do we iterate through the text file, identifying all of the words?
2. Once we can produce a stream of words, how do we calculate their frequency?
3. Once we have calculated the frequencies, how do we print out the result?

 What is the interface between these components?
* (Can we test them individually?




How to produce a stream of words?

1. How do we iterate through the text file, identifying all of the
words?

public interface Iterator<T> {
// returns true if the iteration has more elements
public boolean hasNext();
// returns the next element in the iteration
public T next();
// Optional: removes last element returned
public void remove();

* Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.




WordScanner.java

Histogram.java



lterator — hasNext() — First Attempt?

@Override
public boolean hasNext() {
boolean value = true;

try {
int ¢ = r.read();
if (c == -1) {

value = false;

5
} catch (IOException io) {
System.out.println("I0 Exception happened");

¥

return value;

¥




32: Which combination of the following properties form a useful invariant for the WordScanner fields?

1&A
0%
1&B
0%
public class WordScanner implements Iterator<String> {
private Reader r; I&A
private int c = -1;
/7 ... 0%
}
Which combination of the following properties form a useful
invariant for the WordScanner fields? 2&B
1. risnotnull 0%

2. risnullif and only if there is no next word

A. cis0if there is no next word and nonzero otherwise
cis -1 if there is no next word and contains the first
character of the next word otherwise

w

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



public class WordScanner implements Iterator<String> {
private Reader r;
privateint c =-1;

/] ...

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. risnotnull
2. risnullif and only if there is no next word

A. cis O if thereis no next word and nonzero otherwise
B. cis-1if thereis no next word and contains the first
character of the next word otherwise

ANSWER: 1 & B




