
Programming Languages
and Techniques

(CIS1200)

Lecture 31

I/O & Histogram Demo
Chapter 28

Announcements

• HW08: ChatterBot
– Available now; due on Thursday, April 17th

– Practice with I/O and Collections

• Game Design Proposal Milestone Due: (8 points)
Tuesday, April 15th at Midnight = 11:59PM!

– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback

8

Announcements

• TA position applications are available
– CIS 1100, 1200, 1600, 1210 (see link on Ed)
– Other CIS classes (see https://www.cis.upenn.edu/ta-information/)
– Accepting applications until Friday, April 18th
– Intro CIS TA Panel: April 14th 7-8:30pm, Berger Auditorium

https://www.cis.upenn.edu/ta-information/

Recap: java.io

Viewing sequential data as a stream

I/O Streams
• The stream abstraction represents a communication channel with the outside

world.
– can be used to read or write a potentially unbounded number of data items (unlike a list)
– data items are read from or written to a stream one at a time

• The Java I/O library uses subtyping to provide a unified view of disparate data
sources and sinks.

Low-level Streams
• At the lowest level, a stream is a sequence of binary numbers

• The simplest IO classes break up the sequence into 8-bit chunks, called bytes. Each
byte corresponds to an integer in the range 0 – 255.

11000101001011101011011010101010100101…..

197 46 182 170

Binary IO example
InputStream fin = new FileInputStream(filename);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

BufferedInputStream
• Reading one byte at a time can be slow!
• Each time a stream is read there is a fixed overhead, plus time proportional to the

number of bytes read.*
– disk -> operating system -> JVM -> program

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

• A BufferedInputStream presents the same interface to clients, but internally
reads many bytes at once into a buffer (incurring the fixed overhead only once)

 disk -> operating system
 ->>>> JVM -> program
 JVM -> program
 JVM -> program
 JVM -> program

*simplified explanation – the OS, disk, etc., might use caching to speed things up

Rule of thumb times to access data:
 actual for intuition

 CPU: 0.5ns (~ 1 sec)
 RAM: 100 ns (~ 1.6 minutes)
 SSD: 150,000 ns (~ 2.75 days)

Buffering Example
FileInputStream fin1 = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(fin1);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {
 for (int j=0; j < data[0].length; j++) {
 int ch = fin.read();
 if (ch == -1) {
 fin.close();
 throw new IOException("File ended early");
 }
 data[j][i] = ch;
 }
}
fin.close();

The Standard Java Streams
java.lang.System provides an InputStream and two standard PrintStream
objects for doing console I/O.

System.in

System.err

System.out

Note that System.in, for example, is a static member of the class System – this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.

PrintStream Methods

• Note the use of overloading: there are multiple methods called println
– The compiler figures out which one you mean based on the number of arguments,

and/or the static type of the argument you pass in at the method’s call site.
– The java I/O library uses overloading of constructors pervasively to make it easy to “glue

together” the right stream processing routines

void println(boolean b); // write b followed by a new line
void println(String s); // write s followed by a newline
void println(); // write a newline to the stream

void print(String s); // write s without terminating the line
 (output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

PrintStream adds buffering and binary-conversion
methods to OutputStream

Character based IO
A character stream is a sequence of 16-bit binary numbers

The character-based IO classes break up the sequence into 16-bit chunks, of type char.
Each character corresponds to a letter (specified by a character encoding).

0000010010100011011011010101010100101…..

\u0251 \uB6AA

593 46,762

‘a’

Reader and Writer
• Similar to the InputStream and OutputStream classes, including:

• These operations read and write int values that represent unicode characters
– read returns an integer in the range 0 to 65535 (i.e., 16 bits)
– value -1 represents “no more data” (when returned from read)
– requires an “encoding” (e.g., UTF-8 or UTF-16, set by a Locale)

• Like byte streams, the library provides many subclasses of Reader and Writer Subclasses also
provides rich functionality.
– use these for portable text I/O

• Gotcha: System.in, System.out, System.err are byte streams
– So, wrap in an InputStreamReader / PrintWriter if you need unicode console I/O

int read (); // Reads the next character
void write (int b); // Writes the char to the output

Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)

Problem Statement
Write a program that, given a filename for a text file as input, calculates the
frequencies (i.e., number of occurrences) of each distinct word of the file. The
program should then print the frequency distribution to the console as a sequence of
“word: freq” pairs (one per line).

Histogram result:
The : 1
Write : 1
a : 4
as : 2
calculates : 1
command : 1
console : 1
distinct : 1
distribution : 1
e : 1

each : 1
file : 2
filename : 1
for : 1
freq : 1
frequencies : 1
frequency : 1
given : 1
i : 1
input : 1

line : 2
number : 1
occurrences : 1
of : 4
one : 1
pairs : 1
per : 1
print : 1
program : 2
sequence : 1

should : 1
text : 1
that : 1
the : 4
then : 1
to : 1
word : 2

Decompose the problem
• Sub-problems:

1. How do we iterate through the text file, identifying all of the words?
2. Once we can produce a stream of words, how do we calculate their frequency?
3. Once we have calculated the frequencies, how do we print out the result?

• What is the interface between these components?
• Can we test them individually?

How to produce a stream of words?
1. How do we iterate through the text file, identifying all of the

words?

• Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.

public interface Iterator<T> {
 // returns true if the iteration has more elements
 public boolean hasNext();
 // returns the next element in the iteration
 public T next();
 // Optional: removes last element returned
 public void remove();
}

Coding: Histogram.java

WordScanner.java
Histogram.java

Iterator – hasNext() – First Attempt?

@Override
public boolean hasNext() {
 boolean value = true;
 try {
 int c = r.read();
 if (c == -1) {
 value = false;
 }
 } catch (IOException io) {
 System.out.println("IO Exception happened");
 }
 return value;
}

public class WordScanner implements Iterator<String> {
 private Reader r;
 private int c = -1;
 // ...
}

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. r is not null
2. r is null if and only if there is no next word

A. c is 0 if there is no next word and nonzero otherwise
B. c is -1 if there is no next word and contains the first

character of the next word otherwise

ANSWER: 1 & B

