
Programming Languages
and Techniques

(CIS1200)

Lecture 32

Swing I: Drawing and Event Handling
Chapter 29

Announcements

• HW08: ChatterBot
– Available now; due on Thursday, April 17th

– Practice with I/O and Collections

• Game Design Proposal Milestone Due: (8 points)
Tuesday, April 15th at Midnight = 11:59PM!
– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback

2

Announcements

• TA position applications are available
– CIS 1100, 1200, 1600, 1210 (see link on Ed)
– Other CIS classes (see https://www.cis.upenn.edu/ta-information/)
– Accepting applications until Friday, April 18th
– Intro CIS TA Panel: Tonight! April 14th 7-8:30pm, Berger Auditorium

• Guest Lecturer (Dr. Zdancewic) Wednesday and Friday
– Recordings / slides may be delayed
– Wednesday: “Swing II: Inner Classes and Layout”
– Friday: “Code is Data”

https://www.cis.upenn.edu/ta-information/

Swing

Java's GUI library

Why study GUIs (again)?
• Most common example of event- based

programming
• Heavy (and effective) use of OO inheritance
• Case study in library organization
– and some advanced Java features

• Ideas applicable everywhere:
– Web apps
– Mobile apps
– Desktop apps

• Fun!

10

Terminology overview
GUI Library (OCaml) Swing Classes (Java)

Graphics Context Gctx.gctx Graphics, Graphics2D
Widget type Widget.widget JComponent
Basic Widgets button

label
checkbox

JButton
JLabel
JCheckBox

Container Widgets hpair, vpair JPanel, Layouts
Events event ActionEvent

MouseEvent
KeyEvent

Event Listener mouse_listener
mouseclick_listener
(functions of type event -> unit)

ActionListener
MouseListener
KeyListener

11

Swing practicalities
• Java library for GUI development
– javax.swing.*

• Built on older library: AWT
– java.awt.*
– When there are two versions of something, use Swing’s. (e.g.,

javax.swing.JButton instead of java.awt.Button)
• The “JFoo” version is usually the one you want, not plain “Foo”

• Portable
– Communicates with underlying OS's native window system
– Same Java program looks appropriately different when run in the browser and on

PC, Linux, Mac, etc.

12

Simple Drawing

DrawingCanvas.java
DrawingCanvasMain.java

Fractal Drawing Demo

14

How do we draw a picture?
• In the OCaml GUI HW, we created widgets whose repaint function used the

graphics context to draw an image

let w_draw : widget =
{
 repaint = (fun (gc:gctx) ->
 fractal (with_color gc green)
 200 450 270 80) ;

 size = (fun () -> (200,200));

 handle = (fun () -> ())
}

• In Swing, the preferred idiom is to extend the JComponent class …

O
Cam

l

15

Fundamental Swing Class: JComponent
• Analog of widget type from OCaml GUI project
• Subclasses should override methods of JComponent

– paintComponent (like repaint: displays the component)
– getPreferredSize (like size: calculates the size of the component)

• Events are handled by listeners
– no need for overriding here

• Rich functionality
– minimum/maximum size
– font
– foreground/background color
– borders
– visibility
– much more…

16

Step 1: Recursive function for drawing

private static void fractal(Graphics gc, int x, int y,
double angle, double len) {

 if (len > 1) {
 double af = (angle * Math.PI) / 180.0;

int nx = x + (int)(len * Math.cos(af));
 int ny = y + (int)(len * Math.sin(af));

gc.drawLine(x, y, nx, ny);
fractal(gc, nx, ny, angle + 20, len - 8);
fractal(gc, nx, ny, angle - 10, len - 8);

}
}

17
How do we turn this into a GUI component?

Step 2: Simple Drawing Component

public class DrawingCanvas extends JComponent {
 // paint the drawing panel on the screen
 public void paintComponent (Graphics gc) {
 super.paintComponent(gc);

 // set the pen color
 gc.setColor(Color.GREEN);
 ((Graphics2d)gc).setStroke(new BasicStroke(3));

 // draw a fractal tree
 fractal(gc, 200, 450, 270, 80);
 }

 // give the size of the drawing panel
 public Dimension getPreferredSize() {
 return new Dimension(200,200);
 }
} How do we put this component on the screen?

18

Step 3: JFrame
• Represents a top-level window

– Displayed directly by OS (looks different on Mac, PC, etc.)

• Contains JComponents
• Can be moved, resized, iconified, closed

public void run() {
 JFrame frame = new JFrame("Tree");

 // set the content of the window to be our drawing
 frame.getContentPane().add(new DrawingCanvas());

 // make sure the application exits when the frame closes
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // resize the frame based on the size of the panel
 frame.pack();

 // show the frame
 frame.setVisible(true);
} 19

(Plus a bit of boilerplate to
call run from main…)

Swing User Interaction

Start Simple: Light Switch
Task: Program an application that displays a button. When the button is pressed, it
toggles a “lightbulb” on and off.

 Key idea: use a ButtonListener to toggle the state of the lightbulb

21

OnOffDemo

The Lightbulb GUI program in Swing.

Display the Lightbulb
class LightBulb extends JComponent {
 private boolean isOn = false;

 public void flip() {
 isOn = !isOn;
 }

 public void paintComponent(Graphics gc) {
 if (isOn) {
 gc.setColor(Color.YELLOW);
 } else {
 gc.setColor(Color.BLACK);
 }
 gc.fillRect(0, 0, 100, 100);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100,100);
 }

}

Draw the
Light bulb here
using the graphics
context

Set the size of the
window

Remember the private
state of the lightbulb

23

Main Class
public class OnOff implements Runnable {
 public void run() {
 JFrame frame = new JFrame("On/Off Switch");
 JPanel panel = new JPanel();
 frame.getContentPane().add(panel);
 LightBulb bulb = new LightBulb();
 panel.add(bulb);
 JButton button = new JButton("On/Off");
 panel.add(button);

 button.addActionListener(new ButtonListener(bulb));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new OnOff());
 }

}

Open frame and
make a panel

Create bulb and
button

Start the (Swing)
application

24

Making the Button Do Something

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {
 bulb = b;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

Note that “repaint” does not
necessarily do any repainting right now!
It is simply a notification to Swing that
something needs repainting. (This is a
difference from our OCaml GUI library.)
But it is required.

25

An Awkward Comparison

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}
@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

// somewhere in run …
LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");
button.addActionListener(new ButtonListener(bulb));

let bulb, bulb_flip = make_bulb ()
let onoff,_, bnc = button "On/Off"
;; bnc.add_event_listener (mouseclick_listener bulb_flip)

Java
O

Cam
l

26

Too much “boilerplate”!
• ButtonListener really only needs to do bulb.flip() and repaint
• But we need all this extra boilerplate code to build the class
• Often we will instantiate a given Listener class in a GUI exactly one time

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

27

This is a job for…

