
Programming Languages
and Techniques

(CIS1200)

Lecture 33

Swing II: Inner Classes, Layout, MoD
Chapters 29 and 30

1

Announcements

• HW08: ChatterBot
– Available now; due on Thursday, April 17th

– Practice with I/O and Collections

• HW9: Game Project
– TAs will give you feedback soon
– Final Program Due: Tuesday, April 29th at 11:59pm
– Grade based on demo with your TA during/after reading days
– NO LATE SUBMISSIONS PERMITTED

2

Announcements

• TA position applications are available
– CIS 1100, 1200, 1600, 1210 (see link on Ed)
– Other CIS classes (see https://www.cis.upenn.edu/ta-information/)
– Accepting applications until Friday, April 18th

• Guest Lecturer (Dr. Zdancewic) Wednesday and Friday
– Today: “Swing II: Inner Classes and Layout”
– Friday: “Code is Data”

https://www.cis.upenn.edu/ta-information/

Recap: Swing User Interaction

Start Simple: Light Switch
Task: Program an application that displays a button. When the button is pressed, it
toggles a “lightbulb” on and off.

 Key idea: use a ButtonListener to toggle the state of the lightbulb

9

OnOffDemo

The Lightbulb GUI program in Swing.

Display the Lightbulb
class LightBulb extends JComponent {
 private boolean isOn = false;

 public void flip() {
 isOn = !isOn;
 }

 public void paintComponent(Graphics gc) {
 if (isOn) {
 gc.setColor(Color.YELLOW);
 } else {
 gc.setColor(Color.BLACK);
 }
 gc.fillRect(0, 0, 100, 100);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100,100);
 }

}

Draw the
Light bulb here
using the graphics
context

Set the size of the
window

Remember the private
state of the lightbulb

11

Main Class
public class OnOff implements Runnable {
 public void run() {
 JFrame frame = new JFrame("On/Off Switch");
 JPanel panel = new JPanel();
 frame.getContentPane().add(panel);
 LightBulb bulb = new LightBulb();
 panel.add(bulb);
 JButton button = new JButton("On/Off");
 panel.add(button);

 button.addActionListener(new ButtonListener(bulb));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new OnOff());
 }

}

Open frame and
make a panel

Create bulb and
button

Start the (Swing)
application

12

Making the Button Do Something

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {
 bulb = b;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

Note that “repaint” does not
necessarily do any repainting right now!
It is simply a notification to Swing that
something needs repainting. (This is a
difference from our OCaml GUI library.)
But it is required.

13

An Awkward Comparison

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}
@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

// somewhere in run …
LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");
button.addActionListener(new ButtonListener(bulb));

let bulb, bulb_flip = make_bulb ()
let onoff,_, bnc = button "On/Off"
;; bnc.add_event_listener (mouseclick_listener bulb_flip)

Java
O

Cam
l

14

Too much “boilerplate”!
• ButtonListener really only needs to do bulb.flip() and repaint
• But we need all this extra boilerplate code to build the class
• Often we will instantiate a given Listener class in a GUI exactly one time

class ButtonListener implements ActionListener {
 private LightBulb bulb;
 public ButtonListener (LightBulb b) {

bulb = b;
}

 @Override
 public void actionPerformed(ActionEvent e) {
 bulb.flip();
 bulb.repaint();
 }
}

15

This is a job for…

Inner Classes

Inner Classes
• Useful in situations where objects require “deep access” to each other’s internals

• Replace tangled workarounds like the “owner object” pattern
– Solution with inner classes is easier to read
– No need to allow public access to instance variables of outer class

• Also called “dynamic nested classes”

17

class Outer {
 private int outerVar;
 public Outer () {
 outerVar = 6;
 }
 public class Inner {
 private int innerVar;
 public Inner(int z) {

innerVar = z;
 }
 public int getSum() {
 return outerVar + innerVar;
 }
 }
}

Basic Example

Key idea: Classes can be members of other classes…

Inner class can refer to a
to field bound in the
outer class

The name of this class (i.e.,
the static type of objects that
this class creates) is
Outer.Inner

Inner classes can have
their own fields and
methods.

18

Constructing Inner Class Objects
Based on your understanding of the Java
object model, which of the following make
sense as ways to construct an object of an
inner class type?

1. Outer.Inner obj =
new Outer.Inner(2);

2. Outer.Inner obj =
(new Outer()).new Inner(2);

3. Outer.Inner obj =
new Inner(2);

4. Outer.Inner obj =
Outer.Inner.new(2);

Answer: 2 – the inner class instances can refer to non-static fields of the
outer class (even in the constructor), so the invocation of "new" must
be relative to an existing instance of the Outer class.

class Outer {
 private int outerVar;
 public Outer () {
 outerVar = 6;
 }
 public class Inner {
 private int innerVar;
 public Inner(int z) {
 innerVar = z;
 }
 public int getSum() {
 return outerVar +
 innerVar;
 }
 }
}

20

Object Creation
• Inner classes can refer to the instance variables and methods of the outer class
• Inner class instances usually created by the methods/constructors of the outer class
 public Outer () {
 Inner b = new Inner ();
 }

• Inner class instances cannot be created independently of a containing class instance
 Outer.Inner b = new Outer.Inner()

 Outer a = new Outer();
 Outer.Inner b = a.new Inner();

 Outer.Inner b = (new Outer()).new Inner();

I.e., this.new

21

Anonymous Inner Classes

We can define a class and create an object from it all at once
inside a method body

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
});

23

Anonymous Inner Classes

line.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 shapes.add(new Line(…));
 canvas.repaint();
 }
}); Can access fields and methods

of outer class, as well as (final)
local variables

quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 }); Puts button action with

button definition

24

”Create an object by
instantiating an anonymous

class implementing the
ActionListener interface, with a

method actionPerformed…”

Anonymous Inner Classes
• New expression form: define a class and create an object

from it all at once

new InterfaceOrClassName() {
 public void method1(int x) {
 // code for method1
 }
 public void method2(char y) {
 // code for method2
 }
}

Static type of the expression
is the interface / superclass
named after the new

Dynamic class of the created
object is anonymous!
Can't refer to it.

Normal class
definition,
no constructors
allowed

new keyword

25

Like first-class functions…
• Anonymous inner classes are a Java equivalent of OCaml’s first-class functions
• Both create "delayed computations" that can be stored in a data structure and run

later
– E.g., code stored by the event / action listener
– Code only runs when the button is pressed
– Could run once, many times, or not at all

• Both sorts of computation can refer to variables in the current scope
– OCaml: Any available variable
– Java: only variables marked final (i.e., immutable)

26

But we can do even better…

“Lambdas” are Anonymous Inner Classes
• Often the implementation of an anonymous class is simple

– e.g., an interface that contains only one method

• Lambda* expressions
– treat functionality as method argument, or code as data
– Java's version of first-class functions

• Pass functionality as an argument to another method,
– e.g., what action should be taken when someone clicks a button.

• Any interface that has exactly one method can be implemented via a "lambda"
(anonymous function).
– Method’s "name" implicitly determined by the type at which the lambda is used
– https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

*The term "lambda" comes from the lambda calculus, which was introduced by Alonzo Church in the 1930s. The
lambda calculus forms the theoretical basis of all functional programming languages. 27

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Lambda Expressions

• Java includes lambda expressions, which can implement classes
that define only a single method

• Any interface with exactly one method is a functional interface
• Syntax: x -> { body } // type of x inferred

 (T x) -> { body } // arg x has type T
 (T x, W y) -> { body } // multiple arguments

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener((ActionEvent e) -> {
 bulb.flip();

bulb.repaint();
 });

28

Lambdas In A Nutshell

x -> x + x

(x,y) -> x.m(y)

(x,y) -> {
 System.out.println(x);
 System.out.println(y);
}

int method1(int x) {
 return x + x;
}

int method2(A x, B y) {
 return x.m(y);
}

void method3(String x,
 String y) {
 System.out.println(x);
 System.out.println(y);
}

Lambda Notation "Ordinary" Java Notation

Method names and types
are inferred from the context.

29

Swing Layout Demo

LayoutDemo.java

30

