Programming Languages
and Techniques
(C1S1200)

Lecture 33

Swing Il: Inner Classes, Layout, MoD
Chapters 29 and 30

Announcements

e HWO0S8: ChatterBot

— Available now; due on Thursday, April 17t
— Practice with I/0O and Collections

* HW9: Game Project
— TAs will give you feedback soon
— Final Program Due: Tuesday, April 29th at 11:59pm
— Grade based on demo with your TA during/after reading days
— NO LATE SUBMISSIONS PERMITTED

Announcements

* TA position applications are available

— CIS 1100, 1200, 1600, 1210 (see link on Ed)
— Other CIS classes (see https://www.cis.upenn.edu/ta-information/)

— Accepting applications until Friday, April 18th

* Guest Lecturer (Dr. Zdancewic) Wednesday and Friday
— Today: “Swing Il: Inner Classes and Layout”
— Friday: “Code is Data”

https://www.cis.upenn.edu/ta-information/

Start Simple: Light Switch

Task: Program an application that displays a button. When the button is pressed, it
toggles a “lightbulb” on and off.

O @ On/Off Switch

On/Off

Key idea: use a ButtonListener to toggle the state of the lightbulb

The Lightbulb GUI program in Swing.

Display the Lightbulb

class LightBulb extends JComponent {

private boolean 1sOn = false; :
Remember the private

public void flip() { state of the lightbulb
1sOn = !1s0n;
¥
public void paintComponent(Graphics gc) {
if (isOn) { Draw the
gc.setColor(Color.YELLOW); Light bulb here
} else { ™ using the graphics
gc.setColor(Color.BLACK); context
¥

gc.fillRect(0, 0, 100, 100);
+

public Dimension getPreferredSize() {
return new Dimension(100,100);

Set the size of the
window

Main Class

public class OnOff implements Runnable {
public void run() {

JFrame frame = new JFrame("On/0ff Switch™);
JPanel panel = new JPanel();
frame.getContentPane().add(panel);
LightBulb bulb = new LightBulb();
panel.add(bulb); Create bulb and
JButton button = new JButton("On/0ff"); button
panel.add(button);

button.addActionListener(new ButtonListener(bulb));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.pack();

frame.setVisible(true);

Open frame and
make a panel

3

public static void main(String[] args) { Start the (Swing)
SwingUtilities.invokeLater(new OnOff()); application

3

12

Making the Button Do Something

class ButtonListener implements ActionlListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {
bulb = b;

@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
Note that “repaint” does not

. ' ; -— | . S not
bulb.repaint(); necessarily do any repainting right now!

} It is simply a notification to Swing that
something needs repainting. (Thisis a
} difference from our OCaml GUI library.)
But it is required.

13

An Awkward Comparison

class ButtonListener implements ActionListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {
bulb = b;
¥

@0verride

public void actionPerformed(ActionEvent e) {
bulb.flip(Q);
bulb.repaint();

}

// somewhere in run ..

LightBulb bulb = new LightBulb(Q);

JButton button = new JButton("On/0ff");
button.addActionListener(new ButtonListener(bulb));

let bulb, bulb_flip = make_bulb ()
let onoff,_, bnc = button "On/Off"
;3 bnc.add_event_listener (mouseclick_listener bulb_flip)

eAef

(Wel0

14

Too much “boilerplate”!

* ButtonListener really only needs to do bulb.flip() and repaint
* But we need all this extra boilerplate code to build the class
* Often we will instantiate a given Listener class in a GUI exactly one time

class ButtonListener implements ActionListener {
private LightBulb bulb;

public ButtonListener (LightBulb b) {
bulb = b;
}

@Jverride
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}

This is a job for...

15

Inner Classes

Inner Classes

» Useful in situations where objects require “deep access” to each other’s internals

* Replace tangled workarounds like the “owner object” pattern
— Solution with inner classes is easier to read
— No need to allow public access to instance variables of outer class

* Also called “dynamic nested classes”

Basic Example

Key idea: Classes can be members of other classes...

class Outer {
private int outerVar;

public Quter OO {
outerVar = 6;

}

public class Inner {

private int innerVar;

public Inner(int z) {‘\\‘~\\\\
innerVar = z;

¥

public int getSum() {

return outerVar + innerVar;

y? \

}

The name of this class (i.e.,
the static type of objects that
this class creates) is
Outer.Inner

Inner classes can have
their own fields and
methods.

|

Inner class can refer to a
to field bound in the
outer class

18

34:In Java, which makes sense for creating an object of type Outer.Inner?

class Outer {

private int outerVar;

public Outer () {
outerVar = 0;

}

public class Inner {
private int innerVar;
public Inner(int z) {

innerVar = z;

¥

public int getSum() {
return outerVar +
innerVar;

new Outer.Inner(2)

(new Outer()).new Inner(2)

new Inner(2)

Outer.Inner.new (2)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Constructing

nner Class Objects

class Outer {
private int outerVar;
public Outer () {
outerVar = 6;
by
public class Inner {
private int innerVar;
public Inner(int z) {
innerVar = z;
by
public int getSum() {
return outerVar +
innerVar;

1.

Based on your understanding of the Java
object model, which of the following make
sense as ways to construct an object of an
inner class type?

Outer.Inner obj =
new Outer.Inner(2);

. Outer.Inner obj =

(new Outer()).new Inner(2);

. Outer.Inner obj =

new Inner(2);

. Outer.Inner obj =

Outer.Inner.new(2);

Answer: 2 — the inner class instances can refer to non-static fields of the
outer class (even in the constructor), so the invocation of "new" must
be relative to an existing instance of the Outer class.

Object Creation

* |Inner classes can refer to the instance variables and methods of the outer class
* Inner class instances usually created by the methods/constructors of the outer class

public OQuter (O {
Inner b = new Inner ();

} \
l.e., this.new

* Inner class instances cannot be created independently of a containing class instance

Outer a = new Outer();
Outer.Inner b = a.new Inner(); ,

Outer.Inner b = new Outer.Inner()

Outer.Inner b = (new Outer()).new Inner(); J

21

Anonymous Inner Classes

We can define a class and create an object from it all at once
inside a method body

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/0ff");

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
bulb.flip();
bulb.repaint();
ks
1;

23

Anonymous Inn

er Classe

_—

quit.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

System. exit(9);
}

s

Puts button action with
button definition

line.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

shapes.add(new Line(..));
canvas.repaint();

1)

Can access fields and methods

of outer class, as well as (final)
local variables

24

Anonymous Inner Classes

* New expression form: define a class and create an object
from it all at once

new keyword |—» hew InterfaceOrClassName() { —
public void methodl(int x) {
// code for methodl
} Normal class
public void method2(char y) { | (| definition,
// code for method2 no constructors
} allowed
¥ -
Static type of the expression Dynamic class of the created
is the interface / superclass object is anonymous!

named after the new Can't refer to it.

25

Like first-class functions...

Anonymous inner classes are a Java equivalent of OCaml’s first-class functions

Both create "delayed computations" that can be stored in a data structure and run
later

— E.g., code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

Both sorts of computation can refer to variables in the current scope
— OCaml: Any available variable
— Java: only variables marked final (i.e., immutable)

But we can do even better...

“Lambdas” are Anonymous Inner Classes

Often the implementation of an anonymous class is simple
— e.g., an interface that contains only one method

Lambda* expressions

— treat functionality as method argument, or code as data
— Java's version of first-class functions

Pass functionality as an argument to another method,
— e.g., what action should be taken when someone clicks a button.

Any interface that has exactly one method can be implemented via a "lambda"
(anonymous function).

— Method’s "name" implicitly determined by the type at which the lambda is used

— https://docs.oracle.com/javase/tutorial/java/javaO0/lambdaexpressions.html

*The term "lambda" comes from the lambda calculus, which was introduced by Alonzo Church in the 1930s. The
lambda calculus forms the theoretical basis of all functional programming languages. 27

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Lambda Expressions

Java includes lambda expressions, which can implement classes
that define only a single method

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/0ff");

button.addActionListener((ActionEvent e) -> {
bulb.flip();
bulb.repaint();

3);

Any interface with exactly one method is a functional interface

Syntax: x -> { body }
(T x) -> { body }
(T x, Wy) -> { body }

28

Lambdas In A Nutshell

Lambda Notation

X > X+ X

"Ordinary" Java Notation

int methodl(int x) {
return x + X;

}

(x,y) -> x.m(Cy)

int method2(A x, B y) {
return x.m(y);

}

(X,YD —-> { .
System.out.println(x);

System.out.println(y);
h

Method names and types

are inferred from the context.

void method3(String x,
String y) {
System.out.println(x);

System.out.println(y);
h

29

LayoutDemo.java

30

