
Programming Languages
and Techniques

(CIS1200)

Lecture 35

Swing IV: Paint revisited, Design Patterns
Advanced Java

Chapter 31

We are almost done!
• Monday (4/21): Swing III: Abstract Classes, Timer based games
• Wednesday (4/23): Swing IV: Design Patterns / Advanced Java Topics
• Recitation: Final exam review
• Friday (4/25): Bonus Lecture: CIS and Sustainability (Dr. Benjamin Pierce)

• Monday (4/29): Bonus Lecture: OCaml at Jane Street (Dr. Richard Eisenberg)
• Tuesday (4/30): Game project due at midnight
• Wednesday (4/31): Semester recap
• No recitation!

• Wednesday (5/7): Final exam, 9-11AM

7

Paint Revisited
(thoroughly discussed in Chap 31)

Using Anonymous Inner Classes
Refactoring for OO Design

(See PaintA.java … PaintF.java)

9

Advanced Java

The slides touch on
these. Lecture will
cover only some parts...

• Design Patterns (MVC)
• Java Streams (and lambdas)
• Threads & Synchronization
• Garbage Collection
• Hashing: HashSets & HashMaps
• Packages, package scope
• JVM (Java Virtual Machine) and compiler details:

– class loaders, security managers, just-in-time compilation
• Advanced Generics

– Bounded Polymorphism: type parameters with ‘extends’ constraints
class C<A extends Runnable> { … }

– Type Erasure
– Interaction between generics and arrays

• Reflection
– The Class class

Advanced Java

For all the beautiful details:
Java Language Specification
http://docs.oracle.com/javase/specs/

Design Patterns
• Design Patterns

– Influential OO design book published in
1994 (so a bit dated)

– Identifies many common situations
and "patterns" for implementing
them in OO languages

• Some we have seen explicitly:
– e.g. Iterator pattern

• Some we've used but not explicitly described:
– e.g. The parts of the Chat HW uses the Factory pattern

• Some are workarounds for OO's lack of some features:
– e.g. The Visitor pattern is like OCaml's fold + pattern matching

Model View Controller
Design Pattern

Model-View-Controller Design Pattern

Model
Business Logic

View(s)

User

Controller

Manipulates

Presented by

UsesSees

Example 1: Mushroom of Doom

Example: MOD Program Structure
• GameCourt, GameObj + subclass local state

– object location & velocity
– status of the game (playing, win, loss)
– how the objects interact with eachother (tick)

• Draw methods
– paintComponent in GameCourt
– draw methods in GameObj subclasses
– status label

• Game / GameCourt
– Reset button (updates model)
– Keyboard control (updates square velocity)

Model

View

Controller

Example: CheckBox

Model

Selected?
Pressed?

Views Controllers

Class JToggleButton.ToggleButtonModel

true or false

boolean isSelected() Checks if the button is selected.
void setPressed(boolean b) Sets the pressed state of the button.
void setSelected(boolean b) Sets the selected state of the button.

setSelected

mouseListener

keyListener

Example: Chat Server

Model

owners: Map<Channel,
 Users>

users: Map<Channel,

Set<Users>>
…

Views Controllers

ServerModel

createChannel
joinChannel
invite
kick
…

getChannels
getUsers
getOwner
…

Internal
Representation

Example: Web Pages

Model

Views

Controllers

document.
addEventListener()

Internal
Representation:

DOM
(Document

Object Model)

JavaScript
API

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Updates

UsesSees

MVC Benefits?
• Decouples "model logic" from how state is presented and manipulated
– Suggests how to decompose the design to make it more flexible

• Multiple views
– e.g. from different angles, or for different users

• Multiple controllers
– e.g. mouse vs. keyboard interaction

• Key benefit: Makes the model testable independent of the GUI

Hash Sets & Hash Maps

array-based implementation of sets and maps

Hash Sets and Maps: The Big Idea
Combine:
• the advantage of arrays

– efficient random access to its elements

• with the advantage of a map data structure
– arbitrary keys (not just integer indices)

How?
• Create an index into an array by hashing the key

– A hash function turns a value of some type into an int
– Java's Object class has a hashCode method
– Generally, the space of keys is much larger than the space of hashes, so, unlike array indices,

hashCodes might not be unique

Hash Maps, Pictorially

“John Doe”

“Jimmy Bob”

“Jane Smith”

“Joan Jones”

000 null

001

002 null

003

… …

253

254

255 null

hashCode Array

CSCI

Keys Values

CBE

DMD

WUNG

A schematic HashMap taking Strings (student names) to Undergraduate Majors. The
hashCode takes each string name to an integer code, which we then take “mod 256”
to get an array index between 0 and 255.
For example, “John Doe”.hashCode() mod 256 is 254.

Hash Collisions
• Uh Oh: Indices derived via hashing may not be unique!
 "Jane Smith".hashCode() % 256 è 253
 "Joe Schmoe".hashCode() % 256 è 253

• Good hashCode functions make it unlikely that two keys will produce the same hash

• But, it can still sometimes happen that two keys produce the same index – that is,
their hashes collide

Bucketing and Collisions

“John Doe”

“Jimmy Bob”

“Jane Smith”

“Joan Jones”

000 null

001

002 null

003

… …

253

254

255 null

hashCode ArrayKeys Buckets of Bindings

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide. The
bucket at the corresponding index of the Hash Map array stores the map data.

“John Doe”

“Jimmy Bob” CSCI

WUNG

“Jane Smith” DMD

“Joan Jones”

“Joe Shmoe” MATH

CBE

“Joe Schmoe”

Bucketing and Collisions
• Using an array of buckets (not the only solution to the collision problem)

– Each bucket stores the mappings for keys that have the same hash
– Each bucket is itself a map from keys to values (implemented by a linked list or

binary search tree)
– The buckets can’t use hashing to index the values – instead they use key equality

(via the key’s equals method)

• To look up a key in the Hash Map:
1. Find the right bucket by indexing the array through the key’s hash
2. Search linearly through the bucket contents to find the value associated with

the key

• If the buckets get big, resize the array (cf. Chapter 32)

Hashing and User-defined Classes
public class Point {
 private final int x;
 private final int y;
 public Point(int x, int y) { this.x = x; this.y = y;
}
 public int getX() { return x; }
 public int getY() { return y; }
}

// somewhere else…
Map<Point,String> m = new HashMap<Point,String>();
m.put(new Point(1,2), "House");
System.out.println(m.containsKey(new Point(1,2)));

What gets printed to the console?

1. true
2. false
3. I have no idea

ANSWER: 2 – hashCode
not implemented

Why? Because comparing
hashes is supposed to be
a quick approximation for
equality.

HashCode Requirements
Whenever you override equals you must also

override hashCode in a consistent way:
– whenever o1.equals(o2) == true you must

ensure that
o1.hashCode() == o2.hashCode()

• Note: the converse often doesn't hold
– o1.hashcode() == o2.hashCode()

does not necessarily mean that o1.equals(o2)

Example for Point

• Examples:
– (new Point(1,2)).hashCode() yields 994
– (new Point(2,1)).hashCode() yields 1024

• Note that equal points (in the sense of equals) have the same hashCode
• Why 31? Prime chosen to create more uniform distribution
• Note: Tools (e.g. IntelliJ) can generate this code

public class Point {
 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result + x;
 result = prime * result + y;
 return result;
 }
}

Recipe: Computing Hashes
• What is a good recipe for computing hash values for your own classes?

– intuition: “smear” the data throughout all the bits of the resulting

1. Start with some constant, arbitrary, non-zero int in result.
2. For each significant field f of the class (i.e. each field used when computing

equals), compute a “sub” hash code c for the field:
– For boolean fields: (f ? 1 : 0)
– For byte, char, int, short: (int) f
– For long: (int) (f ^ (f >>> 32))
– For references: 0 if the reference is null, otherwise use the hashCode() of the

field.

3. Accumulate those subhashes into the result by doing (for each field’s c):
result = prime * result + c;

4. return result

Hash Map Performance
• Hash Maps can be used to efficiently implement Maps and Sets

– There are many different strategies for dealing with hash collisions with various time/space
tradeoffs

– Real implementations also dynamically rescale the size of the array (which might require re-
computing the bucket contents)

– See CIS 1210 for more info!

• If the hashCode function gives a good (close to uniform) distribution of hashes, the
buckets are expected to be small (only one or two elements)

• If the hashCode function gives a bad distribution (e.g. always return the same
answer), the buckets will be large (and performance will be bad)

• Performance depends on workload

NOTE: Terminological Clash
• The word "hash" is also used in cryptography

– SHA-1, SHA-2, SHA-3, MD5, etc.

• All hash functions reduce large objects to short summaries
• Cryptographic hashes have some extra requirements:

– Are "one way" (i.e. very hard to invert)
– Should only very rarely have collisions
– Are considerably more expensive to compute

than hashCode (so not suitable for hash tables)

• Never use hashCode when you need a cryptographic hash!
– See CIS 3310 for more details

Threads & Synchronization

Avoid Race Conditions!

(Multithreaded.java)

Threads
• Java programs can be multithreaded
– more than one “thread” of control operating simultaneously

• A Thread object can be created from any class that implements the
Runnable interface
– start: launch the thread
– join: wait for the thread to finish

• Abstract Stack Machine:
– Each thread has its own workspace and stack
– All threads share a common heap
– Threads can communicate via shared references

Uses + Perils
• Threads are useful when one program needs to do multiple things

simultaneously
– display game animation + process user input
– chat server interacting with multiple chat clients
– can hide latency: do work in one thread while another thread waits (e.g. for long

running computation or network I/O)

• Problem: Race Conditions
– What happens when one thread tries to read a memory location at the same

time another thread is writing it?
– What if more than one thread tries to write different values at the same time?

(Unsynchronized) Implementation

interface Counter {
 public void inc();
 public int get();
}

class UnsynchronizedCounter implements Counter {
 private int cnt = 0;

 public void inc() {
 cnt = cnt + 1;
 }

 public int get() {
 return cnt;
 }
}

Setting up a Computation Thread
// The computation thread increments the counter 1000 times
class CounterUser implements Runnable {
 private Counter c;
 private int id;

 CounterUser(int id, Counter c) {
 this.id = id;
 this.c = c;
 }

 @Override
 public void run() {

for (int i = 0; i < 1000; i++) {
 c.inc();
 }
 }
}

First Try: Two Threads & One Counter

public class MultiThreaded {

 public static void main(String[] args) {
 Counter c = new UnsynchronizedCounter();

 // set up a race on the shared counter c
 Thread t1 = new Thread(new CounterUser(1, c));
 Thread t2 = new Thread(new CounterUser(2, c));
 t1.start();
 t2.start();
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) {
 }
 System.out.println("Counter value = " + c.get());
 }

}

Create thread 1
Create thread 2

Start thread 1
Start thread 2

Wait for thread 1 to finish
Wait for thread 2 to finish

What behavior do you expect from Multithreaded.java?

1. The program will print "Counter value = 1000"

2. The program will print "Counter value = 2000"

3. The program will print "Counter value = ????" for
some other number ????

4. The program will throw an exception.

Answer: The program with print “Counter value = val”
 for 1000 <= val <= 2000.
The answer will likely be different each time the program is run!!!!

Data Races

c.inc()

this.cnt =
this.cnt + 1;

this.cnt = 0 + 1;

this.cnt = 1;

c.inc()

this.cnt =
this.cnt + 1;

this.cnt = 0 + 1;

this.cnt = 1;

Counter

cnt 01

Workspace
(Thread 1)

Workspace
(Thread 2)

Heap
(Shared)

Both threads invoke the inc method
of a shared counter object. The
individual instructions of this method
interleave such that they both read 0
and write 1.

The synchronized keyword
• Synchronized methods are atomic
– At most one thread can be executing code within an atomic method at a time
– Other threads must wait their turn

• Careful use eliminates data races

• Tradeoff
– less concurrency means worse performance

Second Try: use Synchronization

//This class uses synchronization
class SynchronizedCounter implements Counter {
 private int cnt = 0;

 public synchronized void inc() {
 cnt = cnt + 1;
 }

 public synchronized int get() {
 return cnt;
 }
}

Using The New Counters
public class MultiThreaded {

 public static void main(String[] args) {

 Counter c = new SynchronizedCounter();

 // set up a race on the shared counter c
 Thread t1 = new Thread(new CounterUser(1, c));
 Thread t2 = new Thread(new CounterUser(2, c));
 t1.start();
 t2.start();
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) {
 }

 System.out.println("Counter value = " + c.get());
 }

}

New!!

Now what behavior do you expect from Multithreaded.java?

1. The program will print "Counter value = 1000"

2. The program will print "Counter value = 2000"

3. The program will print "Counter value = ????" for some
other number ????

4. The program will throw an exception.

Answer: The program with print “Counter value = 2000”
 every time.

Other Synchronization in Java
Need thread safe libraries:

– java.util.concurrent has BlockingQueue and ConcurrentMap
– help rule out synchronization errors
– Note: Swing is not thread safe!

• Java also provides locks
– objects that act as synchronizers for blocks of code

• Deadlock: cyclic dependency in synchronization of locks
– Thread A waiting for lock held by B,

Thread B waiting for lock held by A

Immutability!
• Note that read-only data structures are immune to race conditions
– It’s OK for multiple threads to read a heap location simultaneously
– Less need for locking, synchronization

• As always: immutable data structures simplify your code

Real-world example:
FaceBook's Haxl Library
• Library written in Haskell
• Concurrency / Distributed Database
• https://github.com/facebook/Haxl

Garbage Collection
& Memory Management

Cleaning up the Heap

Memory Management
• The Java Abstract Machine stores all objects in the heap.

– We imagine that the heap has limitless space…
… but: real machines have limited amounts of memory

• Manual memory management
– C and C++
– The programmer explicitly allocates heap objects (malloc / new)
– The programmer explicitly de-allocates the objects (free / delete)

• Automatic memory management (garbage collection)
– Reference Counting: Objective C, Swift, Python, many scripting languages
– Mark & sweep/Copying GC: Java, OCaml, C#, Haskell (and most other ‘managed’ languages)

Manual Memory Management

See manmem.c

Why Garbage Collection?
• Manual memory management (as in C) is cumbersome & error prone

– Freeing the same reference twice is ill defined (crashes or other bugs)
– Explicit free isn’t modular: To properly free all allocated memory, the programmer has to know

what code “owns” each object. Owner code must ensure free is called just once.
– Not calling free leads to space leaks: memory never reclaimed. Especially problematic for long-

running programs.

• Garbage collection
– Have the language runtime system determine when an allocated chunk of memory will no longer

be used and free it automatically
– Extremely convenient and safe
– Garbage collection does impose costs (performance, predictability)
– Space leaks less likely, but can still occur

Graph of Objects in the Heap
• References in the stack and global static fields are roots

Stack Heap

UNREACHABLE!!!!

Reference Counting

Reference Counting
• Each heap object tracks how many references point to it:

Stack Heap

1 2 1 1

1

2 2 1 0

Reference Counting
• When reference count goes to 0, reclaim that space

– and decrement counts for objects pointed to by that object
Stack Heap

1 2 1 1

1

2 2 1 00

Reference Counting
• When reference count goes to 0, reclaim that space

– and decrement counts for objects pointed to by that object
Stack Heap

1 2 1 1

1

2 2 01

Problem: Cyclic Data
• Cycles of data will never decrement to 0!

– Can lead to "space leaks"
Stack Heap

1 2 1 1

1

2 1

Dealing with Cycles
• Option 1: Require programmers to explicitly null-out references to break cycles

• Option 2: Periodically run mark & sweep GC to collect cycles

• Option 3: Require programmers to distinguish “weak pointers” from “strong
pointers”
– weak pointers: if all references to an object are “weak” then the object can be freed even with

non-zero reference count
– “Back edges” in the object graph should be designated as weak
– (Aside: weak pointers useful in other GC settings too)

Mark & Sweep / Copying

Traverse the Heap

Memory Use & Reachability
• When is a chunk of memory no longer needed?

– In general, this question is undecidable.

• We can approximate it by freeing memory that we’re sure is not needed because it
can’t be reached from any root references.
– A root reference is one that might be accessible directly from the program
– Root references include (global) static fields and references in the stack.

• If an object can be reached by traversing pointers from a root, it is live.
• It is safe to reclaim all heap allocations not reachable from a root (such objects are

garbage or dead objects).

Mark and Sweep Garbage Collection
• Classic algorithm with two phases:
• Phase 1: Mark

– Start from the roots
– Do depth-first traversal, marking every object reached.

• Phase 2: Sweep
– Walk over all allocated objects and check for marks.
– Unmarked objects are reclaimed.
– Marked objects have their marks cleared.
– Optional: compact all live objects in heap by moving them adjacent to one another. (Needs extra

work & indirection to “patch up” references)

• (In practice much more complex: "generational GC")

Results of Marking Graph
Unreachable

blocks are
garbage

Stack Heap

Reachable
blocks are kept

Second Phase: Drop "Unreachable"

Stack Heap

• Sweep over all objects, dropping the ones marked as
unreachable and keeping the ones marked reachable.

✓ ✓

✓ ✓

Costs & Implications
• Need to generalize to account for objects that have multiple outgoing pointers.
• Mark & Sweep algorithm reads all memory in use by the program (even if it’s

garbage!)
– Running time is proportional to the total amount of allocated memory (both live and garbage).
– Can pause the programs for long times during garbage collection.

Copying Garbage Collection
• Like mark & sweep: collects all garbage.
• Basic idea: use two regions of memory

– One region is the memory in use by the program. New allocation happens in this region.
– Other region is idle until the GC requires it.

• Garbage collection algorithm:
– Traverse over live objects in the active region (called the “from- space”), copying them to the idle

region (called the “to-space”).
– After copying all reachable data, switch the roles of the from-space and to-space.
– All dead objects in the (old) from-space are discarded en masse.
– A side effect of copying is that all live objects are compacted together.

Copy from "From" to "To"

Stack Heap

From Space

To Space

Discard the "From Space"

Stack Heap To Space

GCDemo

See GCTest.java

Garbage Collection Take Aways
• Big idea: the Java runtime system tries to free-up as much memory as it can

automatically.
– Almost always a big win, in terms of convenience and reliability

• Sometimes can affect performance:
– Lots of dead objects might take a long time to collect
– When garbage collection will be triggered can be hard to predict, so there can be “pauses”

(modern GC implementations try to avoid this!)
– Global data structures can have references to “zombie” objects that won’t be used, but are still

reachable ⇒ “space leak”.

• There are many advanced programming techniques to address these issues:
– Configuring the GC parameters
– Explicitly triggering a GC phase
– “Weak” references

Functional Programming + Streams

(See Streams.java)

I/O Streams
• The stream abstraction represents a communication channel with the outside

world.
– can be used to read or write a potentially unbounded number of data items (unlike a list)
– data items are read from or written to a stream one at a time

• The Java I/O library uses subtyping to provide a unified view of disparate data
sources and sinks.

Streams redux
• Use streams of elements to support functional-style operations on collections
• Key differences between streams and collections:

– No storage (i.e., not a data structure)
– Functional in nature (i.e., do not modify the source)
– Possibly unbounded (i.e., computations on infinite streams can complete in finite time)
– Consumable (i.e., similar to Iterator)
– Lazy-seeking

• “Find the first input String that begins with a vowel” doesn’t need to look at all Strings from
the input

Creating Streams (1)
• From a Collection via the stream() and parallelStream() methods
• From an array via Arrays.stream()
• The lines of a file can be obtained from BufferedReader.lines()
• Streams of random numbers can be obtained from Random.ints();

• Numerous other stream-bearing methods in the JDK

Creating Streams (2)
• Can create your own Low-Level Stream
• Similar to having a custom class like WordScanner that implements Iterator

• Spliterator – parallel analogue to Iterator
– (Possibly infinite) Collection of elements
– Support for:

• Sequentially advancing elements (similar to next())
• Bulk Traversal (performs the given action for each remaining element, sequentially in the

current thread)
• Splitting off some portion of the input into another spliterator, which can be processed in

parallel (much easier than doing threads manually!)

Stream Pipeline Operations
• Intermediate (Stream-producing) operations

– E.g., filter, map, sorted
– Similar to transform in Ocaml
– Return a new stream
– Always lazy (produce elements as needed, not ahead of time)
– Traversal of the source does not begin until the terminal operation of the pipeline is

executed
• Terminal (value- or side-effect-producing) operations

– E.g. forEach, reduce, findFirst, allMatch, max, min
– Similar to fold in Ocaml
– Produce a result or side-effect

• Combined to create Stream pipelines

Lambdas, Streams, Pipelines
The Beauty and Joy of functional programming, now in Java!

roster.stream()
.filter(p ->

p.getHomeSchool().equals("SEAS")
&& p.getAge() >= 18
&& p.getAge() <= 25)

.map(p -> p.getEmailAddress())

.forEach(email -> System.out.println(email));

int sum = widgets.stream()
.filter(b -> b.getColor() == RED)
.mapToInt(b -> b.getWeight())
.sum();

Functional Programming + Parallelism

(See Streams.java)

Functional Programming + Parallelism
• Parallelism by design in Java 1.8

– Streams are functional in nature (i.e., do not modify the source)
– Spliterator

• Much easier than doing it manually
– No need for synchronized
– No need for locks
– Don’t have to worry about race conditions!

• Use parallelStream() (instead of stream())!
– Java will automatically create the necessary threads and scale based on your computer’s

hardware

Sample Problem
• Given a list of numbers, find the sum of the squares of the numbers

• Iterative Approach

• Works, more likely to have bugs (off-by-one), harder to parallelize

int sum = 0;
for (int i = 0; i < list.size(); i++) {

int x = list.get(i);
sum += x * x;

}

Sample Problem
• Given a list of numbers, find the sum of the squares of the numbers

• Functional Approach
• Use transform and fold (aka map and reduce in Java)

• Less likely to have bugs, much easier to parallelize

list.parallelStream()
.map(x -> x * x)
.reduce(0, Integer::sum);

