Programming Languages
and Techniques
(C1S1200)

Lecture 36

Semester Recap

CIS 1200 Final Exam

* Wednesday, May 7t 9:00-11:00 AM
— Location: Chem 102

e Students who need accommodations should schedule their exams
(ASAP) through the Weingarten Center

e Review Session / Mock exam
— Time and Location — Sunday, May 4t at 12pm in Towne 100
— 2 hour mock exam (Spring 2024) followed by 2 hour review session
— (The review session will be recorded)
— Look for details on Ed

Exam Preparation

 Comprehensive exam covering the entire course:
— Ideas from OCaml material (but no need to write OCaml)

— All Java material

* emphasizing material since midterm 2: subtyping, dynamic dispatch,
collections, equality & overriding, exceptions, 1/O, inner classes, swing

— All course content

» except: Bonus Lectures (Code is Data, CIS Sustainability, OCaml at Jane
Street)

* Only simple/shallow questions about Advanced Topics

e Closed book, but...

— You may use one letter-sized, two-sided, handwritten sheet of notes during
the exam.

From Day 1

CIS 1200 is a course in program design

Practical skills:

— ability to write larger (~1000 lines) programs

— increased independence
("working without a recipe")

— test-driven development, principled debugging

Conceptual foundations:
— common data structures and algorithms
— several different programming idioms
— focus on modularity and compositionality
— derived from first principles throughout

It will be fun!

reburn §/2°¥"e™ elementsbeginneed

a reference operations ynit
implements library os programming

== funcbion: "

A QM bime many Displaceable size acke'se

Promise: A cha//engmg
but rewarding course.

N ohjects

ﬁ\%duse) heap ol flO|d"~‘. IOO Node

exceptions [0 Poinb

mod | expressnon u b Ilc GWO ieca
e cepb ion end

case llscener I workspace next variable

i array a ss

flgure
empty fshuapeCUlons rrrrr point Iemenb
bubbonva Ue vest

I

=:Orog ram -
first = Figure v o~ o private “yone
callusing OC? "’esfl"eba“an‘\lastg:h
ja'ﬁs Iengbh

H Note g field input

exb§nb b Ilke rElgﬁl?Q;l

Empty d b @head write

boo Tnusbbdmerenbpam whesher metGhods
implemen nuGable
graphics use opjec b drawing ogpes

u

Which assighment was the most challenging?

OCaml finger exercises

DNA

Sets and Maps

Queues

GUI

Images

Chat

TwitterBot

Game

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

0%

0%

70

u

Which assighnment was the most rewarding?

OCaml finger exercises

DNA

Sets and Maps

Queues

GUI

Images

Chat

TwitterBot

Game

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

0%

0%

70

13 concepts in 36 lectures

Concept: Design Recipe

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs? On unusual ones?
On erroneous ones?
4. Implement the required behavior
Often by decomposing the problem into simpler ones and applying
the same recipe to each

HOW TO SOLVE IT

G. POLYA

"Solving problems", wrote Polya, "is a practical art, like swimming,
or skiing, or playing the piano: You can learn it only by imitation
and practice."

Concept: Testing

* We use a "test first" methodology - write tests before coding

* Examples:
\?
— Simple assertions and properties for declarative s'(ﬁb A
programs (or subprograms) X e\\‘x

— Longer (and more) tests for stateful /0?
programs / subprograms TDD circle ¢¢
— Informal tests for GUlIs . e@
of life

(can be automated through tools)

. Why? v

— Tests clarify the specification of the problem

— Helps you understand the invariants RQ"F“""""
— Thinking about tests informs the implementation

— Tests help with extending and refactoring code later

— Industry practice; useful for coordinating teams

Concept: Abstraction

Generalize code so it can be reused
in multiple situations.

Don't Repeat Yourself!

] . W= ¢ = .\‘{f e~
Examples. Ifunchons/methogls, gfhﬁ 5#" AN
generics, higher-order functions, , g ' I
interfaces, subtyping, abstract classes — i
inner classes X o Jhcanse
W hY? Pablo Picasso, Bull (plates | - XI) 1945

— Duplicated functionality = duplicated bugs
— Duplicated functionality = more bugs waiting to happen
— Good abstractions make code easier to read, modify, maintain

Concept: Persistent data structures

Store data in persistent, immutable s e -
as transformations of those struct Recursion is the natural way of computing
a function f(¢) when ¢ belongs to an

inductive data type:

Examples: immutable lists and tre

Strings, Streams in Java (HW 6/8) | 1. Determine the value of ffor the base
case(s).

2. Compute ffor larger cases by
combining the results of recursively

— Simple model of computa*’ calling fon smaller cases.

— Simple interface: 3. Same idea as mathematical induction

between vari (a la CIS 1600) /
— Recursion amenable to mathematical anarysiscrsrovuyrz1U)

— Plays well with concurrency

e progra

Concept: Tree Structured data

let rec length (l:int list) : int =

Examples: begin match 1 with
. . “ ” I 0 -—>0
— Lists (i.e., “unary” trees) | _::tl -> 1 + length(t1)

Apes

Simple binary trees (evolutionary trees)

Trees with invariants: e.g., binary search trees
TreeSet and TreeMap collections in Java
Widget trees: screen layout + event routing
Swing components

Why?

— Trees are ubiquitous in computer science! h/
— Organized data leads to efficient divide and conquer

algorithms

ot
d lot
SRS

Greater Apes Lesser Apes

User clicks,

generating
event e

[Hello v*ld.

. &
label space borden | .handle e

v
label J/ .handle e

Concept: First-class computation

* Code is a form of data that can be defined by functions, methods, or objects
(including anonymous ones), stored in data structures, and passed to other
functions

 Examples: map, filter, fold (HW4), pixel transformers (HW6), event listeners
(HWS5, 7, 9)

cell.addMouselListener(e ->
selectCell(cell));

e Why?
— Powerful tool for abstraction: can factor out design patterns that differ only in
certain computations

Concept: Static Types, Generics, and Subtyping

Static type systems can detect many errors early. Every expression has a static type, and

OCaml/Java use the types to rule out buggy programs. Generics and subtyping make types
more flexible and allow for better code reuse.

let rec contains (x:’a) (1:’a 1list) : bool =
begin match 1 with
| [] -> false
| h::tl -> x = a || (contains x tl)
end

Why?
— Let's the language enforce (programmer-defined) abstraction

— Easier to fix problems indicated by a type error than to write a test case and then figure
out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants about the program are
maintained

Concept: Mutable data

Some data structures are ephemeral: computations mutate them over time

Examples: queues, deques (HW4), = B - [
GUI state (HWS5, 9), arrays (HW 6), — =1/ ,
iterators (HW8) = < =

A queue with two elements
Why?

— Common in OO programming, which simulates the transformations that objects
undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

Concept: Interface vs. Implementation

* Type abstraction hides the actual implementation of
a data structure, describes a data structure by its
interface (what it does vs. how it is represented),
supports reasoning with invariants

 Examples: Set/Map interface (HW3), queues in

OCaml and Java, en concrete representation

Invariants are a crucial tool for reasoning \Zo- - _—L__ Sl
about data structures: abstract view

e Why?
Elexibilitv: C 1. Establish the invariants when you
- f—:‘XI Hty: ?n create the structure. @
without modify 2. Preserve the invariants when you @

— Correctness: modify the structure.
implement 3. Protect the structure from external

modification through encapsulationy

Concept: Collection types--Sequences, Sets, Maps

 Examples: HW3, Java Collections, HW 7, 8
e Why?
— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language you are
programming in

— Need to be able to choose the data structure with the right semantics

fA ;
A A]
<Q>~<A>~<.>~i
A filter A transform . fold
O L J (map) L J (reduce)

Concept: Linked Lists, Trees, BSTs, Queues, and Arrays

* There are implementation trade-offs for

abstract types
 Examples:
— Binary Search Trees vs. (linked) Lists vs. Hashing for head @mo R EN) AR
sets and maps tail [[a)] [next //a)next =
— Linked lists vs. Arrays for sequential data Aauee it two elements
e Why?

— Abstract types have multiple implementations

— Different implementations have different trade-offs.
Need to understand these trade-offs to use them
well.

— For example: BSTs use their invariants to speed up
lookup operations compared to linked lists.

Concept: Abstract Stack Machine

Do the Function call Save Workspace; push 11, 12 Lookup 11 Lookup 11

Match Expression Nil case Doesn’t Match Cors case Does Match

Simplify the Branch: push h, t

Lookup " Lookup 1" Lookup “sppend” Lookup ‘sppend”

Concept: Abstract Stack Machine

* The Abstract Stack Machine is a detailed model of how programs execute in
OCaml/Java

 Example: Many, throughout the semester!

e Why?
— To know what your program does without running it

— To understand tricky features of Java/OCaml language
(aliasing, first-class functions, exceptions, dynamic dispatch)

— To help understand the programming models of other languages: Javascript, Python,
C++, CH, ...

— To help predict performance and space usage
— To implement a compiler or interpreter

Concept: Event-Driven programming

Structure a program by associating "handlers" that react to events. Handlers
typically interact with the rest of the program by modifying shared state.

Examples: GUI programming in OCaml (HW 5) and Java (HW 9)

[NON) X! OCaml graphics
Why?
— Practice with reasoning about 0N
shared state el N‘N\
— Practice with first-class functions [\
: : - : i 5 e M =
— Basis for programming with Swing 8~ J)

— Common in GUI applications

[OLine] [OEilipse] [OText] [DThick lines)

= LGLLLEELTT=

Text buffer:
S

Why some other language than Java?

* Level playing field for students with varying backgrounds coming into the same class

* Two points of comparison — OCaml and Java — allows us to emphasize language-
independent concepts

* Learn concepts that generalize across diverse languages.

e "OCaml-style" type systems have influenced many modern language designs

...but why specifically OCaml?

“Y20Caml

Rich, orthogonal vocabulary

* InJava: int, A[], Object, Interfaces
* In OCaml:

— primitives

— arrays

— objects

— datatypes (including lists, trees, and options)
— records

— refs
— first-class functions
— abstract types

e All of the above can be implemented in Java, but untangling various use cases
of objects is subtle

* Concepts like generics can be studied in isolation in OCaml with fewer intricate
interactions with the rest of the language

Functional Programming

In Java, every reference is mutable and optional by
default

In OCaml, persistent data structures are the default.
Furthermore, the type system keeps track of what is
and is not mutable, and what is and is not optional

Advantages of immutable/persistent data structures

Don't have to keep track of aliasing. Interface to the data
structure is simpler

Often easier to think in terms of "transforming" data
structures than "modifying" data structures

Simpler implementation
(compare lists and trees to queues and deques)

Simple but powerful evaluation model
(substitution + recursion)

WHY DO YU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET” YOU?

TAIL. RECURSION 1S
IT5 OWN REWARD.

P

Object Oriented Programming

An important way of decomposing / structuring

programs (
Basic prmuples D
— Encapsulation of local, mutable state Pa—

. <
— Inheritance to share code e
— Dynamic dispatch to select which code gets run Java

— Subtyping to capture statically known information
about inheritance and the "is a" relationship

Fundamental to most major programming
languages (Python, JavaScript, C++, C#, etc.)

but why specifically Java?

Important Ecosystem

Canonical example of OO language design
Widely used: Desktop / Server / Android / etc.
Gateway to C/C++/C#/Kotlin/Scala/Rust
Industrial strength tools

— Intelli) / Eclipse

— JUnit testing framework
— Profilers, debuggers, ...

Libraries:

— Collections / 1/0 libraries/ Swing
In-demand job skill
— |EEE Spectrum: 2nd

IEEE Spectrum Rank

Type

sssss

(] Q0 @ 1000
B - ® 0o 9.3
n c 0 Q@ 944
[« 0o e s
H R Q 815
n JavaScript @ 79.4
@ c# ® 0 O ® 745
n Matlab Q 706

TIOBE Programming Community Index

\\\\\\\\\\\\\\\\\\\\\\

&
KEEP
CALM

AND

LEARN JAVA

KemCuntreraneon.

— TIOBE: 4"

What Next?

e Classes:
— CIS 1210, 2620, 3200 — data structures, performance, computational complexity

— CIS 19xx — programming languages
* C++, Python, Haskell, Ruby on Rails, iPhone programming, Android, Javascript, Rust, Go

— CIS 2400 — lower-level: hardware, gates, assembly, C programming
— CIS 4710, 4480 — hardware and OS’s

— CIS 5520 — advanced functional programming in Haskell

— CIS 5521 — compilers (projects in OCaml)

— And many more!

Penn
Engineering

The Craft of Programming

The Pragmatic Programmer:
From Journeyman to Master
by Andrew Hunt and David Thomas

— Not about a particular programming language,
it covers style, effective use of tools, and
good practices for developing programs

Joshua Bloch ...

* Effective Java
Effective Java by Joshua Bloch

Third Edition

— Technical advice and wisdom about using Java for
building software. The views we have espoused in
this course share much of the same design
philosophy

Universal Principles
of Design

Universal Principles of Design

by William Lidwell, Kritina Holden, Jill Butler

— General principles about good design with examples
and applications ranging across software and user
interfaces, to physical objects, to traditional
graphic design. I

Functional Programming

Rea/ Wor/d Ocam/ lorRELL,Y |
by Yaron Minsky, Anil Madhavpeddy, b &

and Jason Hickey T
— Using OCaml in practice: learn how to leverage “A
its rich types, module system, libraries, and Real World

tools to build reliable, efficient software. OCaml
— https://realworldocaml.org/

Explore related Languages:

DI\= Haske ’Scala PAson

", Kotlin @ Clojure <> F# Swift

https://realworldocaml.org/

Conferences / Videos / Blogs

Many blogs / tutorials about Java
curry-on.org

cufp.org Commercial Users of Functional
Programming
— See e.g. Manuel Chakravarty's talk

"A Type is Worth a Thousand Tests" Jane
Jane Street Tech Blog @ Street

— OCaml in practice

— "Building better software" podcast

Joinus! Penn's PL Club plclub.org

Ways to get Involved

Become a TA!

£ [wicsd
iniversity of pennsylvania Undergraduate
Research

89 ->09936>
5

Thanks to you!

let rec length (l:int list) : int = ece X/ OCami graphics
begin match 1 with

0 ->20
| _::t1l -> 1 + length(tl) s o

end AAAA
ACAT | AAGA Hey, kids
#foo
GCAT TCGT TAGA GAGA
j"ﬂf
- What channel do you want to join? 4 What channel do you want to join?
E #bar \i‘ [#baz
Cancel oK Concel) (R i [Oenlipse] [OText] [Thick lines

ID@DIDD@

800

B viae
| Load new image Save image | Undo Quit

RotateCW
RotateCCW
3
¥y oy
Simple transform
Color scale F
Contrast
Reduce palette — e
alpha-Blend
Vignette B

o

2Zor

Pla
Pea
Custom

