
Programming Languages
and Techniques

(CIS1200)

Lecture 36

Semester Recap

CIS 1200 Final Exam
• Wednesday, May 7th 9:00-11:00 AM

– Location: Chem 102

• Students who need accommodations should schedule their exams
(ASAP) through the Weingarten Center

• Review Session / Mock exam
– Time and Location – Sunday, May 4th at 12pm in Towne 100
– 2 hour mock exam (Spring 2024) followed by 2 hour review session
– (The review session will be recorded)
– Look for details on Ed

Exam Preparation
• Comprehensive exam covering the entire course:
– Ideas from OCaml material (but no need to write OCaml)
– All Java material

• emphasizing material since midterm 2: subtyping, dynamic dispatch,
collections, equality & overriding, exceptions, I/O, inner classes, swing

– All course content
• except: Bonus Lectures (Code is Data, CIS Sustainability, OCaml at Jane

Street)
• Only simple/shallow questions about Advanced Topics

• Closed book, but…
– You may use one letter-sized, two-sided, handwritten sheet of notes during

the exam.

CIS 1200 Recap

From Day 1

• CIS 1200 is a course in program design
• Practical skills:

– ability to write larger (~1000 lines) programs
– increased independence

("working without a recipe")
– test-driven development, principled debugging

• Conceptual foundations:
– common data structures and algorithms
– several different programming idioms
– focus on modularity and compositionality
– derived from first principles throughout

• It will be fun!

Promise: A challenging
but rewarding course.

CIS 1200 Concepts

13 concepts in 36 lectures

Concept: Design Recipe

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs? On unusual ones?

On erroneous ones?
4. Implement the required behavior

Often by decomposing the problem into simpler ones and applying
the same recipe to each

"Solving problems", wrote Polya, "is a practical art, like swimming,
or skiing, or playing the piano: You can learn it only by imitation
and practice."

Concept: Testing
• We use a "test first" methodology - write tests before coding

• Examples:
– Simple assertions and properties for declarative

programs (or subprograms)
– Longer (and more) tests for stateful

programs / subprograms
– Informal tests for GUIs

(can be automated through tools)

• Why?
– Tests clarify the specification of the problem
– Helps you understand the invariants
– Thinking about tests informs the implementation
– Tests help with extending and refactoring code later
– Industry practice; useful for coordinating teams

Concept: Abstraction
• Generalize code so it can be reused

in multiple situations.

 Don't Repeat Yourself!

• Examples: Functions/methods,
generics, higher-order functions,
interfaces, subtyping, abstract classes
inner classes

• Why?
– Duplicated functionality = duplicated bugs
– Duplicated functionality = more bugs waiting to happen
– Good abstractions make code easier to read, modify, maintain

Concept: Persistent data structures
• Store data in persistent, immutable structures; implement computations

as transformations of those structures

• Examples: immutable lists and trees in OCaml (HW 1/2/3), images,
Strings, Streams in Java (HW 6/8)

• Why?
– Simple model of computation
– Simple interface: Don't have to reason about aliasing (no implicit communication

between various parts of the program, all interfaces are explicit)
– Recursion amenable to mathematical analysis (CIS 1600/1210)
– Plays well with concurrency

Recursion is the natural way of computing
a function f(t) when t belongs to an
inductive data type:

1. Determine the value of f for the base
case(s).

2. Compute f for larger cases by
combining the results of recursively
calling f on smaller cases.

3. Same idea as mathematical induction
(a la CIS 1600)

Concept: Tree Structured data
• Examples:

– Lists (i.e., “unary” trees)
– Simple binary trees (evolutionary trees)
– Trees with invariants: e.g., binary search trees
– TreeSet and TreeMap collections in Java
– Widget trees: screen layout + event routing
– Swing components

• Why?
– Trees are ubiquitous in computer science!
– Organized data leads to efficient divide and conquer

algorithms

let rec length (l:int list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length(tl)
 end

Concept: First-class computation
• Code is a form of data that can be defined by functions, methods, or objects

(including anonymous ones), stored in data structures, and passed to other
functions

• Examples: map, filter, fold (HW4), pixel transformers (HW6), event listeners
(HW5, 7, 9)

• Why?
– Powerful tool for abstraction: can factor out design patterns that differ only in

certain computations

cell.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 selectCell(cell);
 }
});

cell.addMouseListener(e ->
 selectCell(cell));

Concept: Static Types, Generics, and Subtyping
• Static type systems can detect many errors early. Every expression has a static type, and

OCaml/Java use the types to rule out buggy programs. Generics and subtyping make types
more flexible and allow for better code reuse.

• Why?
– Let's the language enforce (programmer-defined) abstraction
– Easier to fix problems indicated by a type error than to write a test case and then figure

out why the test case fails
– Promotes refactoring: type checking ensures that basic invariants about the program are

maintained

let rec contains (x:’a) (l:’a list) : bool =
 begin match l with

| [] -> false
| h::tl -> x = a || (contains x tl)

end

Concept: Mutable data
• Some data structures are ephemeral: computations mutate them over time

• Examples: queues, deques (HW4),
GUI state (HW5, 9), arrays (HW 6),
iterators (HW8)

• Why?
– Common in OO programming, which simulates the transformations that objects

undergo when interacting with their environment
– Heavily used for event-based programming, where different parts of the

application communicate via shared state
– Default style for Java libraries (collections, etc.)

Concept: Interface vs. Implementation
• Type abstraction hides the actual implementation of

a data structure, describes a data structure by its
interface (what it does vs. how it is represented),
supports reasoning with invariants

• Examples: Set/Map interface (HW3), queues in
OCaml and Java, encapsulation and access control

• Why?
– Flexibility: Can change the implementation

without modifying clients
– Correctness: Can preserve invariants about the

implementation

Invariants are a crucial tool for reasoning
about data structures:

1. Establish the invariants when you
create the structure.

2. Preserve the invariants when you
modify the structure.

3. Protect the structure from external
modification through encapsulation.

1

3

0

abstract view

1

0 3

< >

concrete representation

BST:

Concept: Collection types--Sequences, Sets, Maps
• Examples: HW3, Java Collections, HW 7, 8
• Why?

– These abstract data types come up again and again
– Need aggregate data structures (collections) no matter what language you are

programming in
– Need to be able to choose the data structure with the right semantics

filter transform
(map)

fold
(reduce)

Concept: Linked Lists, Trees, BSTs, Queues, and Arrays
• There are implementation trade-offs for

abstract types
• Examples:

– Binary Search Trees vs. (linked) Lists vs. Hashing for
sets and maps

– Linked lists vs. Arrays for sequential data
• Why?

– Abstract types have multiple implementations
– Different implementations have different trade-offs.

Need to understand these trade-offs to use them
well.

– For example: BSTs use their invariants to speed up
lookup operations compared to linked lists.

interface Set {boolean isEmpty(); …}

Concept: Abstract Stack Machine

Concept: Abstract Stack Machine
• The Abstract Stack Machine is a detailed model of how programs execute in

OCaml/Java

• Example: Many, throughout the semester!

• Why?
– To know what your program does without running it
– To understand tricky features of Java/OCaml language

(aliasing, first-class functions, exceptions, dynamic dispatch)
– To help understand the programming models of other languages: Javascript, Python,

C++, C#, …
– To help predict performance and space usage
– To implement a compiler or interpreter

Concept: Event-Driven programming
• Structure a program by associating "handlers" that react to events. Handlers

typically interact with the rest of the program by modifying shared state.

• Examples: GUI programming in OCaml (HW 5) and Java (HW 9)

• Why?
– Practice with reasoning about

shared state
– Practice with first-class functions
– Basis for programming with Swing
– Common in GUI applications

Why OCaml?

Why some other language than Java?
• Level playing field for students with varying backgrounds coming into the same class
• Two points of comparison — OCaml and Java — allows us to emphasize language-

independent concepts
• Learn concepts that generalize across diverse languages.
• "OCaml-style" type systems have influenced many modern language designs

…but why specifically OCaml?

Rich, orthogonal vocabulary
• In Java: int, A[], Object, Interfaces
• In OCaml:

– primitives
– arrays
– objects
– datatypes (including lists, trees, and options)
– records
– refs
– first-class functions
– abstract types

• All of the above can be implemented in Java, but untangling various use cases
of objects is subtle

• Concepts like generics can be studied in isolation in OCaml with fewer intricate
interactions with the rest of the language

Functional Programming
• In Java, every reference is mutable and optional by

default
• In OCaml, persistent data structures are the default.

Furthermore, the type system keeps track of what is
and is not mutable, and what is and is not optional

• Advantages of immutable/persistent data structures
– Don't have to keep track of aliasing. Interface to the data

structure is simpler
– Often easier to think in terms of "transforming" data

structures than "modifying" data structures
– Simpler implementation

(compare lists and trees to queues and deques)
– Simple but powerful evaluation model

(substitution + recursion)

Why Java?

Object Oriented Programming
• An important way of decomposing / structuring

programs
• Basic principles

– Encapsulation of local, mutable state
– Inheritance to share code
– Dynamic dispatch to select which code gets run
– Subtyping to capture statically known information

about inheritance and the "is a" relationship
• Fundamental to most major programming

languages (Python, JavaScript, C++, C#, etc.)

• but why specifically Java?

Important Ecosystem
• Canonical example of OO language design
• Widely used: Desktop / Server / Android / etc.
• Gateway to C/C++/C#/Kotlin/Scala/Rust
• Industrial strength tools

– IntelliJ / Eclipse
– JUnit testing framework
– Profilers, debuggers, …

• Libraries:
– Collections / I/O libraries/ Swing

• In-demand job skill
– IEEE Spectrum: 2nd
– TIOBE: 4rd

IEEE Spectrum Rank

Onward…

What Next?
• Classes:

– CIS 1210, 2620, 3200 – data structures, performance, computational complexity
– CIS 19xx – programming languages

• C++, Python, Haskell, Ruby on Rails, iPhone programming, Android, Javascript, Rust, Go

– CIS 2400 – lower-level: hardware, gates, assembly, C programming
– CIS 4710, 4480 – hardware and OS’s
– CIS 5520 – advanced functional programming in Haskell
– CIS 5521 – compilers (projects in OCaml)
– And many more!

The Craft of Programming
• The Pragmatic Programmer:

From Journeyman to Master
by Andrew Hunt and David Thomas
– Not about a particular programming language,

it covers style, effective use of tools, and
good practices for developing programs

• Effective Java
by Joshua Bloch

 – Technical advice and wisdom about using Java for
 building software. The views we have espoused in
 this course share much of the same design
 philosophy

• Universal Principles of Design
by William Lidwell, Kritina Holden, Jill Butler
– General principles about good design with examples

and applications ranging across software and user
interfaces, to physical objects, to traditional
graphic design.

Functional Programming
• Real World OCaml

by Yaron Minsky, Anil Madhavpeddy,
and Jason Hickey
– Using OCaml in practice: learn how to leverage

 its rich types, module system, libraries, and
 tools to build reliable, efficient software.

– https://realworldocaml.org/

• Explore related Languages:

F#

https://realworldocaml.org/

Conferences / Videos / Blogs
• Many blogs / tutorials about Java
• curry-on.org
• cufp.org Commercial Users of Functional

Programming
– See e.g. Manuel Chakravarty's talk

"A Type is Worth a Thousand Tests"

• Jane Street Tech Blog
– OCaml in practice
– "Building better software" podcast

• Join us! Penn's PL Club plclub.org

Ways to get Involved

Undergraduate
Research

Become a TA! plclub.org

Thanks to our amazing staff!

Thanks to you!
let rec length (l:int list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length(tl)
 end

