Programming Languages
and Techniques
(C1S120)

Lecture 3
Jan 18, 2012

Lists and Recursion

Announcements

Homework 1: OCaml Finger Exercises
— Due: Monday, Jan. 23 at 11:59:59pm (midnight)

Please read Chapter 1-3 of the course notes, which is
available from the course web pages.

Lab topic this week: Debugging OCaml programs

TA office hours: on webpage (calendar) and on Piazza

Questions?
— Post to Piazza, privately if need to include code

— Drop by office hours
(Weirich, 3:20-5PM today and 4-5PM Friday)

Let Declarations

A let declaration gives a name (a.k.a. an identifier) to
the result of some expression™.

let pi : float = 3.14159
let seconds per day : int = 60 * 60 * 24

Note that there is no way of assigning a new value to
an identifier after it is declared.

*We might sometimes call these identifiers variables, but the terminology is a bit confusing because in languages like Java
and C a variable is something that can be modified over the course of a program. In OCaml, like in mathematics, once a
variable’s value is determined, it can never be modified... As a reminder of this difference, for the purposes of OCaml we’ll
try to use the word “identifier” when talking about the name bound by a let.

Scope

Multiple declarations of the same variable or

function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

let x =1

let vy = x + 1

let x = 1000

let z = x + 2

let test () : bool =
z = 1002

;7 run test “x shadowed” test

scope of x

scope of y

scope of x
(shadows
earlier x)

scope of z

Evaluating Let Expressions

To calculate the value of a let expression, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let x =1

let vy = x + 1

let x = 1000

let z = x + 2

let test () : bool =
z = 1002

;7 run test “x shadowed” test

Evaluating Let Expressions

To calculate the value of a let expression, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

1=1,so
let x =1 substitute 1
let vy =1+ 1 for xin x’s
let x = 1000 >Eope
let z = x_+ 2
let test () : bool = __ note that this
z = 1002 occurrence
doesn’t

++» run test “x shadowed” test
— change

Evaluating Let Expressions

To calculate the value of a let expression, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

1+1 = 2, so
let x = 1 substitute 2 for
let v = 2 yiny’s scope
let x = 1000 (there are no
occurrences of
let z = x + 2)
let test () : bool =
z = 1002

;7 run test “x shadowed” test

Evaluating Let Expressions

To calculate the value of a let expression, first

calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let x =1
let v = 2
let x = 1000
let z = 1000 + 2 — 1000=1000, so
substitute 1000
let test () : bool = for x in this x’s
z = 1002 scope

;7 run test “x shadowed” test

This ‘%’ is part of
the string...it
doesn’t change.

Evaluating Let Expressions

To calculate the value of a let expression, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let x =1
let v = 2
let x = 1000
let z = 1002
let test () : bool =
1002 = 1002
;7 run test “x shadowed” test

1000+2=1002,
so substitute
1002 for z in its

scope

Local Let Declarations

Let declarations can appear both at top-level and

nested within other expressions. scope of x is
the body of f

let £ (x:int) : 1int =

let vy = x * 10 in scope of y is
nested within
Yy © Y the body of f
let test () : bool = .
scope of fis
(f 3) = 300 the rest of the
;7 run test “test f” test program

Nested let declarations are followed by “in”.

Top-level let declarations are not.

Function Declarations

fUﬂCUOﬂ Nname parameter Names parameter types

let total secs \\hprs 1nt)//

(
(minutes:int
(seconds int)
: 1int
(hours * 60 + minutes) * 60 + seconds

4 N
result type

function body (an expression)

Function Calls

Once a function has been declared, it can be invoked by
writing the function name followed by a list of
arguments. This is called function application.

total secs 5 30 22

(Note that the list of arguments is not parenthesized.)

Calculating With Functions

* To calculate the value of a function application, first calculate
values for its arguments and then substitute them for the
parameters in the body of the functions.

total secs (2 + 3) 12 17
— total secs 5 12 17 because 2+3——5
— (5*60 + 12) * 60 + 17 subst. theargs. in the body
— (300 + 12) * 60 + 17
— 312 * 60 + 17
—> 18720 + 17 let total secs (hours:int)

(minutes:int)
— 18737 (seconds:int) : int =

(hours * 60 + minutes) * 60 + seconds

Structured Data

A New Twist

* The design problem we looked at last time involved

relationships among atomic values — simple
numbers.

 Some real-world programs live in this simple world
— e.g., the first one ever run in this building!

* But most interesting programs need to work with
collections of data — sets, lists, tables, databases, ...

A Design Problem / Situation

Suppose we have a friend who has a lot of digital music, and
she wants some help with her playlists. She wants to be able
to do things like check how many songs are in a playlist, check
whether a particular song is in a playlist, check how many Lady
Gaga songs are in a playlist, and see of all of the Lady Gaga
songs in a playlist, etc. She might want to remove all the Lady
Gaga songs from here collection.

Design Pattern

Understand the problem

What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On
unusual ones? On erroneous ones?

Implement the behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

1. Understand the problem

Suppose we have a friend who has a lot of digital music, and
she wants some help with her playlists. She wants to be able
to do things like check how many songs are in a playlist, check
whether a particular song is in a playlist, check how many Lady
Gaga songs are in a playlist, and see of all of the Lady Gaga
songs in a playlist, etc.

How do we store and query information about songs?
Important concepts are:

1.

ok wnN

A playlist (a collection of songs)

A fixed collection of gaga _songs

Counting the number_of songs in a playlist
Whether a playlist contains a particular song
Counting the number_of gaga _songs in a playlist
Calculating all _gaga _songs in a playlist

2. Formalize the interface

* Represent a song by a string (which is its name)
* Represent a playlist using an immutable list of strings

* Represent the collection of Lady Gaga Songs using a toplevel
definition

let gaga songs : string list = ["Bad Romance"; ..]

e Define the interface to the functions:

let number of songs (pl : string list) : int =
let contains (pl : string list) (song : string) : bool =
let number of gaga songs (pl : string list) : int =

let all gaga songs (pl : string list) : string list =

3. Write test cases

let pll : string list = ["Bad Romance"; "Nightswimming";
"Telephone"; "Everybody Hurts"]

let pl2 : string list = ["Losing My Religion";
"Man on the Moon"; "Belong"]

let pl3 : string list = []

let test () : bool =
(number of songs pll) = 4
;7 run test "number of songs pll" test

Define playlists for testing.
Include some with and

without Gaga songs as well as
an empty list.

let test () : bool =
(number of songs pl2) = 3
;; run_test "number of songs pl2" test

let test () : bool =
(number of songs pl3) = 0
;7 run test "number of songs pl3" test

4. Implement the behavior

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.
marked with rec.

let rec number of songs (pl : string list) : int
begin match pl with

| 11 >0
| (song :: rest) -> 1 + number of songs rest
end

If the lists is non-empty, then “song”
is the first song of the list and “rest”
is the remainder of the list.

