Programming Languages
and Techniques
(C1S120)

Lecture 4
Jan 20, 2012

Lists Il, Tuples, and Patterns

Announcements

* Homework 1: OCaml Finger Exercises
— Due: Monday, Jan 23 at 11:59:59pm (midnight)
— Don’t use ‘@’ for Problem 7. ©

e TA office hours: on website and Piazza

* Questions?
— Post to Piazza (privately if need to include code)
— Office hours (Weirich: 4-5PM today, none on Monday)

Who is CIS 1207

90

80

70

60

50

College

CIS120 / Spring 2012

40
30
20
10
0 I I

SEAS Wharton

-

“ male
W female

& freshman

i sophomore
junior

& senior

© other

Prior experience with programming

Work experience involving significant
programming

CIS110

An AP or IB Computer Science course
or the equivalent

Multiple courses/camps/experiences
that involved programming

A course/camp/experience that
taught me how to do some
programming

Very little (e.g. a little html code)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Size of largest program

90

80

70

“ Java or CH#

60

W CorC++

(Visual)Basic

50

& Python or Ruby

40

« Javascript

30

“ Scheme or Lisp

20

10 - —

10s

CIS120 / Spring 2012

ML or Haskell
~ Other

100s 1000s

CIS120 / Spring 2012

List Types*

The type of lists of integers is written
int list

The type of lists of strings is written
string list

The type of lists of booleans is written
bool list

The type of lists of lists of strings is written
(string list) 1list

etc.

*Note that lists in OCaml are homogeneous — all of the list elements must be of the
same type. If you try to create a list like [1; “hello”; 3;true] you will get a type error.

What is a list?

* Alistis either:
[] the empty list, sometimes called nil, or

ve:etail aheadvalueyv, followed by a list of the
remaining elements, the tail

 Here, the ‘: :’ operator constructs a new list from a
head element and a shorter list.

— This operator is pronounced “cons” (for “construct”)

* Importantly, there is no other way to create a list.

Example Lists

To build a list, cons together elements, ending with the

empty list:

CIS120 / Spring 2012

l::2::3::4::[] a list of four numbers
“abc”::"xyz"1:[] a list of two strings
true::[] a list of one boolean
[] the empty list

Explicitly parenthesized

(

: " is an ordinary operator like + or *, except it takes

an element and a /ist of elements as inputs:

le:(2::(32:(4::[1)))

“abc”::("xyz"::[])

true::[]

[]

CIS120 / Spring 2012

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Convenient List Syntax

Much simpler notation: enclose a list of elements in
[and] separated by ;

CIS120 / Spring 2012

[1;2;3;4]

[llabcll ; IIXYZ n]

[true]

[]

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Using Recursion Over Lists

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.
marked with rec.

let rec number of songs (pl : string list) : int
begin match pl with

| 11 >0
| (song :: rest) -> 1 + number of songs rest
end

Patterns specify the structure of
the value and (optionally) give
names to parts of it.

If the lists is non-empty, then “song”
is the first song of the list and “rest”
is the remainder of the list.

Calculating With Lists

e Calculating with lists is just as easy as calculating with
arithmetic expressions:

(2+3)::(12 / 5)::[]
— 5::(12 / 5)::[] because 243 = 5
— 5::2::] because 12/5 = 2

A list is a value whenever all of its elements are values.

Calculating with Cases

e Consider how to run a match expression:
begin match [1;2;3] with

|]

-> 42

| first::rest -> first + 10

end
e

1+10

11

CIS120 / Spring 2012

Note: [1;2;3] equalsl::(2::(3::[]))

It doesn’t match the pattern [] so the first branch is
skipped, but it does match the pattern
first::restwhen first is1 and

rest is(2::(3::[1)) -

So, substitute 1 for £irst in the second branch

Calculating with Recursion

number of songs [“Monster”;”Teeth”]
— (substitute the list for pl in the function body)
begin match “Monster”::(“Teeth”::[]) with
| 11 >0
| (song :: rest) -> 1 + (number of songs rest)
end
—> (second case matches with rest = “Teeth”::[]
1 + (number of songs “Teeth”::[])
— (substitute the list for pl in the function body)
1 + (begin match “Teeth”::[] with
| [1 >0
| (song :: rest) -> 1 + (number of songs rest)
end
— (second case matches again, with rest = [])

1 + (1 + number of songs [])

— (SUbSﬁtUte []forpl in thefunCﬁon bOdy) let rec number of songs (pl : string list) : int =
begin match pl with
| 11 >0
| (song :: rest) -> 1 + number of songs rest

end

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec number of songs (pl : string list) : int =
begin match pl with
| [1 >0
| (song :: rest) -> 1 + number of songs rest
end
let rec contains (pl:string list) (s:string) : bool =

begin match pl with

| [1 -> false

| (song :: rest) -=> s = song || contains rest s
end

Structural Recursion Over Lists

Structural recursion builds an answer from smaller
components:

let rec £ (1 : .. list) .. ¢ .. =
begin match 1 with

| 11 > .
| (hd :: rest) -> .. f rest ..

end

The branch for [] calculates the value (£ []) directly.
The branch for hd: : rest calculates
(f (hd::rest))given hdand (f rest).

Design Pattern for Recursion

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
 |If the main input to the program is an immutable list, make
sure the tests cover both empty and non-empty cases

4. Implement the required behavior
* If the main input to the program is an immutable list, look for

a recursive solution...

 Suppose someone has given us a partial solution that
works for lists up to a certain size. Can we use it to build
a better solution that works for lists that are one
element larger?

* Isthere a direct solution for the empty list?

CIS120 / Spring 2012

More List Examples

see lists.ml

tails

e Design problem: Given a list of integers, produce all
suffixes of a given list, starting with the full list and
removing the first element at each step

m B)

—E

~

—~H B

\

N

tails [1;2;3;4] =
[[1;2;3;4]; [2;3;4]; [3:;4]1; [41; [1]

CIS120 / Spring 2012

\ﬂn

INIts

* Design problem: Given a list, produce all initial
prefixes of the list.

1 2.4

/

1
“m
\I

inits [1;2;3;4] =
[[1:; [117 [1;21; [1;2;3]; [1:;2;3741]

CIS120 / Spring 2012

Challenge: All rotations

e Design problem: Given a list, produce all rotations of
the list.

|
-

\
all rotations [1;2;3;4] =
[[1;2;3;4];[2;3:74;11];
[3;4;1;2];([4;1;2;3]]

CIS120 / Spring 2012

1 2.4

all_rotations

