Announcements
Programming Languages

* Homework 1 due at midnight tonight.
and Techniques

* Homework 2 will soon be up on the web pages.

(C|5120) — On-time due date: Monday, Jan 30™ at 11:59:59pm
— Get started early, and seek assistance if you get stuck!
Lecture 5 * My office hours canceled this week.
Jan 23, 2012

Tuples, Datatypes and Binary Trees

Tuples

* Atuple is a way of grouping together two or more
data values (of possibly different types).

* In OCaml, tuples are created by writing the values,
TupIes and Patterns separated by commas, in parentheses:

let my pair = (3, true)
let my triple = (“Hello”, 5, false)
let my quaduple = (1,2,”three”,false)

* Tuple types are written using ‘*’
—e.g.my triple hastype:

string * int * bool

Pattern Matching Tuples

* Tuples can also be taken apart by pattern matching:

Mixing Tuples and Lists

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
=
ub"

* Tuples and lists can mix freely:

[(1,7a"); (2,"b"); (3,"c")]
(int * string) list

([1;2;3], [lla"; llb"; llc"])
: (int 1list) * (string list)

* Note how, as with lists, the pattern follows the syntax for the
corresponding values

CIS120 / Spring 2012

Nested Patterns

CIS120 / Spring 2012

* So far, we’ve seen simple patterns:

- [1]
—x::tl
- (a,b,c)
* Like expressions, patterns can nest:
—x::[] matches lists of length 1
—xX::(ys:tl) matches lists of length at least 2

— (x::Xs, y::ys) matches pairs of non-empty lists

* A useful pattern is the wildcard pattern: _

- ::tl matches a non-empty list, but only names tail

— (_/X) matches a pair, but only names the 2" part

CIS120 / Spring 2012

Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
zip [1; 2; 3] ["a"; “b"; “c"] =
[(1,7a"); (2,"b"); (3,"c")]

let rec zip (ll:int list)
(12:string list) : (int * string) list =
begin match (11, 12) with
| (L1, 1) -> 11
| (x::xXs, y::ys) => (X,y)::(zip xs ys)
| _ -> failwith "zip: unequal length lists"
end

CIS120 / Spring 2012

Exhaustive Matches

* Case analysis is exhaustive if every value being matched
against can fit some branch’s pattern.

* Example of a non-exhaustive match:

Unused Branches

let sum two (1 : int list) : int =
begin match 1 with
| x::y:: => x+y
end

* The branches in a match expression are considered in
order from top to bottom.

* |If you have “redundant” matches, then some later
branches might not be reachable.
— OCaml will give you a warning

* OCaml will give you a warning and show an example of
what isn’t covered by your cases.
— in this example, there is no case for [], or for a singleton list

* The wildcard pattern and failwith are useful tools for
ensuring match coverage.

CIS120 / Spring 2012

Datatypes and Trees

CIS120 / Spring 2012 11

let bad cases (1 : int list) : int =
begin match 1 with
This case matches more lists
| [1] ‘>(_ than that one does.
| x:: = 2””/,,,,/—”””/
| x::y::tl“=> x + y (* unreachable *)
end

CIS120 / Spring 2012

Case Study: DNA and Evolutionary Trees

* Problem: reconstruct evolutionary trees from biological data.
— What are the relevant abstractions?
— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated
Type for
Nucleotides

List for

Double

Helix lots Apes
|

and lots

G G of time
$ Greater Apes
G
T
b A A
A ; o
- T G >l o
T orangutan
A white-cheeked gibbon
- G ¢
G
T
A
. C ¢
c
T <& siamang
A :
chimpanzee “pileated gibbon
Suggested reading:

CIs120/ S 2012 ; o . 2
15120/ Spring 201 Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution !

DNA Computing Abstractions

* Nucleotide
— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)
* Codon
— three nucleotides : e.g. (A,A,T) or (T,G,C)
— codons map to amino acids and other markers
* Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...

* Phylogenetic tree

AAAA

— Binary (2-child) tree ACAT | AAGA
with helices (species)
at the nodes and leaves
GCAT TCGT TAGA GAGA

C1S120 / Spring 2012

Simple User-defined Datatypes

* OCaml lets programmers define new datatypes

. , type name
type day = type’ keyword (must be lowercase)
l Sunday type nucleotide =
| Monday | A
| Tuesday | G
| Wednesday | ¢
| Thursday | T
| Friday \
\
| Saturday constructor names (tags)

(must be capitalized)

* The constructors are the values of the datatype
— e.g. Aisanucleotideand [A; G; C]isanucleotide list

C1S120 / Spring 2012 15

Building Datatypes

* Programming languages provide means of creating
and manipulating structured data
* We have already seen
— primitive datatypes (int, string, bool, ...)
— immutable lists (int list, string list, string list list, ...)
— tuples (int * int, int * string, ...)
— functions (that define relationships among values)

* How do we build new datatypes from these?

C1S120 / Spring 2012

Pattern Matching Simple Datatypes

* Datatypes can be analyzed by pattern matching:

let string of n (n:nucleotide) : string =
begin match n with
| A -> “adenine”
| ¢ -> “cytosine”
| G => “guanine”
| T -> “thymine”
end

* There is one case per constructor
— you will get a warning if you leave out a case

* As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

C1S120 / Spring 2012

A Point About Abstraction

Type Abbreviations

* We could represent data like this by using integers:
— Sunday =0, Monday = 1, Tuesday = 2, etc.

* But:

— Integers support different operations than days do
i.e. it doesn’t make sense to do arithmetic like:
Wednesday - Monday = Tuesday

— There are more integers than days, i.e. “17” isn’t a valid day
under the representation above, so you must be careful never
to pass such invalid “days” to functions that expect days.

* Conflating integers with days can lead to many bugs.

* All modern languages (Java, C#, C++, OCaml,...) provide
user-defined types for this reason.

CIS120 / Spring 2012 17

* OCaml also lets us name types, like this:

type helix nucleotide list
type codon = nucleotide *
\ \\ nucleotide * nucleotide

\ \ \)
type keyword type T
name definition in terms of existing types

* i.e.a codonisjustatriple of nucleotides

* |ts scope is the rest of the program.

CIS120 / Spring 2012 18

Datatypes Can Also Carry Data

Pattern Matching Datatypes

* Datatype constructors can also carry values

type measurement =
| Missing
| NucCount of nucleotide * int
| CodonCount of codon * int

* Pattern matching notation combines syntax of tuples
and simple datatype constructors:

/ \)
keyword ‘of’ ConstructorYs may take a
tuple of arguments
* Values of type ‘measurement’ include:
Missing
NucCount (A, 3)
CodonCount((A,G,T), 17)

C1S120 / Spring 2012 19

let get count (m:measurement) : int =
begin match m with

| Missing -> 0
| NucCount(, n) -> n
| CodonCount(, n) -> n
end

* Patterns bind variables (e.g. ‘n’) just like lists

CIS120 / Spring 2012 20

Recursive User-defined Datatypes

Syntax for User-defined Types

* Datatypes can mention themselves!

— There should be at least one non-recursive ‘base case’
* Otherwise, how would you build a value for such a datatype?

type my string list =
| Nil
| Cons of string * my string list

type my string list =
| Nil
| /Ccons of string * my string list
\

* Example values of typemy string list

/ |\ J
Y
base case Cons carries a
(nonrecursive) tuple of values

recursive
definition

* Recursive datatypes can be taken apart by pattern
matching (and recursive functions).

CIS120 / Spring 2012

Nil
Cons(“hello”, Nil)
Cons(“a"”, Cons(“b", Cons‘,\(“c",

Nil)))
/

Constructors
(note the
capitalization)
21 CIS120 / Spring 2012 22

Binary Trees

root node

Binary Trees

¢ root’s
right child

root’s =—————————=2(2
left child

CIS120 / Spring 2012

left subtree

3 1\) & |eaf node

i S empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

23 cis120/spring 2012 A leaf is a node whose children are both empty. 2

Another Example Tree

Basic Tree Concepts

CIS120 / Spring 2012

\ " ‘/’ 7\\‘
@ © /«

e Size: the total number of nodes in the trees

* Height: the length of the longest path from the root
to a leaf

* Traversal: A pattern of visiting the nodes of the tree.
— In order: left-child, node, right child
— Pre order: node, left-child, right child
— Post order: left-child, right child, node
— Level order: in order of distance from the root

25 CIS120 / Spring 2012 26

Demo: Binary Trees

