Programming Languages and Techniques (CIS120)

Lecture 6

Jan 25, 2012

Binary Trees

Announcements

- Homework 2 is on the web pages.
 - On-time due date: Jan. 30 at 11:59:59pm
 - Get started early, and seek assistance if you get stuck!

DNA Computing Abstractions

Nucleotide

Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

Codon

- three nucleotides : e.g. (A,A,T) or (T,G,C)
- codons map to amino acids and other markers

Helix

- a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...

Phylogenetic tree

Binary (2-child) tree
 with helices (species)
 at the nodes and leaves

DNA Computing Abstractions

```
type nucleotide =
    | G (* Guanine *)
    | C (* Cytosine *)
    | A (* Adenine *)
    | T (* Thymine *)

type codon = nucleotide * nucleotide * nucleotide

type helix = nucleotide list

type tree =
    | Leaf of helix
    | Node of tree * helix * tree
Recursive datatypes
```

Recap: Binary Trees

A binary tree is either *empty*, or a *node* with at most two children, both of which are also binary trees.

A *leaf* is a node whose children are both empty.

Integer Binary Trees in OCaml

```
type tree =
| Empty
| Node of tree * int * tree
```

```
let t : tree =
  Node (Node (Empty, 1, Empty),
     3,
     Node (Empty, 2,
          Node (Empty, 4, Empty)))
```


Demo

see demotree.ml

Other uses for trees?

Family trees

Organizational charts

Game trees

Expression trees

Trees as Containers

- Like lists, trees aggregate data
- Like lists, we can determine whether the data structure contains a particular element

 CHALLENGE: can we determine where a tree contains a particular element quickly?