Programming Languages
and Techniques
(C1S120)

Lecture 10
Feb 3, 2012

First-class functions

Announcements

* Homework 3 is due Monday at 11:59:59pm

« Midterm 1 will be in class on Wednesday, February 15t

Finite Map Demo

Using module signatures to preserve
data structure invariants

Finite Maps

A finite map is a collection of bindings from distinct keys to
values.

— Operations to add & remove bindings, test for key membership,
lookup a value by its key

Example:an (ID, int) map might map a PennKey ID to
the lab section.

Like sets, such finite maps appear in many settings:
— map domain names to IP addresses

— map words to their definitions (a dictionary)

— map user names to passwords

— map game character unique identifiers to dialog trees

Demo: Map.ml

Abstracting with first-class functions

Finite Map Interface

type ('k,'v) map

val empty : ('k,'v) map

val is empty : ('k,'v) map -> bool

val mem : 'k -=> ('k,'v) map -> bool

val find : 'k -=> ('k,'v) map -> 'v

val add : 'k > 'v -> ('k,'v) map -> ('k, 'v) map

val remove : 'k -> ('k,'v) map -> ('k,'v) map

val from list : (‘k * ‘v) list -> (‘k,’v) map
val bindings : (‘k,’v) map -> (‘k * ‘v) list

CIS120 / Spring 2012

Motivating design problem

Suppose you are given a finite map from students to majors,
but you wanted a map that includes only students in the
engineering school? Or only students in wharton?

type student = string

type major = string

type school = SEAS | WHARTON | SAS | NURSING

type roster = (student,major) map

let to school (m : major) : school =

let is engr (m : major) : bool = to school m = SEAS

let is wharton (m : major) : bool = to school m = WHARTON
let only engr (r : roster) : roster = ?2?2?

let only wharton (r : roster) : roster = 2?2?

Demo: Majors.ml

First-class Functions

 Amazing fact: functions are data!

* You can pass a function as an argument to another function:

let twice (f:int -> int) (x:int) : int =
f (f x)
let add one (z:int) : int = z + 1

 You can return a function as the result of another function.

let make incr (n:int) : int -> int =
let helper (x:int) : int =
n + x

in
helper

CIS120 / Spring 2012

10

Evaluating First-Class Functions

let twice (f:int -> int) (x:int) : int =
f (£ x)
let add one (z:int) : int = z + 1

twice add one 3

add one (add one 3) substitute add_one for f, 3 for x
add one (3 + 1) substitute 3 for z in add_one
add one 4 because 3+1=4

4 + 1 substitute 4 for z in add_one

DT

5 because 4+1=5

