Programming Languages
and Techniques
(C1S120)

Lecture 11
Feb 6, 2012

First-class functions

Announcements

Homework 4 will be available tomorrow
— due Monday, February 13t at 11:59:59pm
— n-body physics simulation

Updated lecture notes also available...

Midterm 1 will be during class time on Wednesday, February
15th
— LOCATION: Leidy Lab 10

— Review material on course website

First-class Functions

 Amazing fact: functions are data!

* You can pass a function as an argument to another function:

let twice (f:int -> int) (x:int) : int =
f (f x)
let add one (z:int) : int = z + 1

 You can return a function as the result of another function.

let make incr (n:int) : int -> int =
let helper (x:int) : int =
n + x

in
helper

CIS120 / Spring 2012

Evaluating First-Class Functions

let twice (f:int -> int) (x:int) : int =
f (£ x)
let add one (z:int) : int = z + 1

twice add one 3

add one (add one 3) substitute add_one for f, 3 for x
add one (3 + 1) substitute 3 for z in add_one
add one 4 because 3+1=4

4 + 1 substitute 4 for z in add_one

DT

5 because 4+1=5

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + X in
helper

make incr 3
substitute 3 for n
— let helper (x:int) = 3 + x in helper

— 227

CIS120 / Spring 2012

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + X in
helper

make incr 3

substitute 3 for n
—— let helper (x:int) = 3 + x in helper
— fun (x:int) -> 3 + x Anonymous function value

4 \
keyword “fun”

“->” after arguments
no return type annotation

CIS120 / Spring 2012 6

Function values

We can decompose a standard function definition:

let is engr (m : major) : bool = to school m = SEAS

into two parts:

let is engr = fun (m:major) -> to _school m = SEAS

N \]
N Y ’
define a variable with create a function value
that value

Both definitions have the same interface and behave exactly the same:

val is _engr : major -> bool

CIS120 / Spring 2012

Anonymous functions

let is _engr (m
let is sas (m

major) : bool = to school m
major) : bool to _school m

let rec only (f : major -> bool) (r: roster)

let only engr (r : roster) : roster =
only is engr r
let only sas (r : roster) : roster =

only is sas r

SEAS
SAS

let only engr (r : roster) : roster =
only
(fun (m:major) -> to school m = SEAS) r
let only sas (r : roster) : roster =
only

(fun (m:major) -> to school m SAS) r

CIS120 / Spring 2012

Multiple Arguments

We can decompose a standard function definition:

let sum (x : int) (y:int) : int : x + y

into two parts:

let sum = fun (x:int) (y:int) -> x + y

R\ J

\ Y ’
define a variable with create a function
that value value

Both definitions have the same interface and behave exactly the same:

val sum : int -> int -> int

CIS120 / Spring 2012 9

Partial Application

let sum (x:int)

(y:int) : int = x + vy

sum 3

— (fun (x:int)(y:int) -> x + y) 3 definition of sum

— fun (y:int)

CIS120 / Spring 2012

-> 3 + vy substitute 3 for x

10

Evaluating Partial Application

let sum = fun (x:int) (y:int) -> x + vy
let add three = sum 3
let answer = add three 39

let sum = fun (x:int) (y:int) -> x + vy

let add three = (fun (x:int) (y:int) -> x + y) 3
let answer = add_ three 39
—>

let sum = fun (x:int) (y:int) -> x + vy
let add three = fun (y:int) -> 3 + y
let answer = add three 39

let sum = fun (x:int) (y:int) -> x + y
let add three = fun (y:int) -> 3 + y
let answer = (fun (y:int) -> 3 + y) 39

CIS120 / Spring 2012

11

Evaluating Partial Application

let
let
let

let
let
let

let
let
let

sum = fun (x:int) (y:int) -> x + vy
add three = fun (y:int) -> 3 + y
answer = (fun (y:int) -> 3 + y) 39

sum = fun (x:int) (y:int) -> x + vy
add three = fun (y:int) -> 3 + y
answer = 3 + 39

sum = fun (x:int) (y:int) -> x + y
add three = fun (y:int) -> 3 + y
answer = 42

CIS120 / Spring 2012

List transformations

Fundamental design pattern
using first-class functions

Refactoring code: Keys and Values

let rec keys (m:('k*'v) list) : 'k list =
begin match m with
| 11 => T[]
| (k,v)::rest -> k::(keys rest)
end

let rec values (m:('k*'v) list) : 'v list =
begin match m with
| 11 => T[]
| (k,v)::rest -> v::(values rest)
end

Can we use first-class functions
to refactor code to share common
structure?

CIS120 / Spring 2012 14

Keys and Values

let rec helper (f:) (m: ('k*'v) list)
begin match m with
| 1 -> 1]
| (k,v)::t -=> £ (k,v) :: helper f t

end

let keys m:(‘k,’'v) map)
let values/ (m:(‘k,’'v) map)

‘k list = helper fst m
‘v list = helpejfsnd m

/

/

fst and snd are functions that

access the parts of a tuple:
fst (1,2) =1
snd (1,2) = 2

The argument £ controls
what happens with the binding

CIS120 / Spring 2012

15

Keys and Values

let rec helper (f:(‘k*’'v) -> ‘b) (m: ('k*'v) list)
: ‘b list =
begin match m with
| [1 -> []
| (k,v)::t -=> £ (k,v) :: helper f t
end

let keys m:(‘'k,’v) list) : ‘k list = helper fst m
let values/ (m:(‘k,’v) list) : ‘v list = helpjp snd m

/

fst and snd are functions that

access the parts of a tuple:
fst (1,2) =1
snd (1,2) = 2

The argument £ controls
what happens with the binding

CIS120 / Spring 2012

16

Going even more generic

let rec helper (f:(‘'k*’'v) -> ‘b) (m: ('k*'v) list)
: ‘b list =
begin match m with
| [1 -> []
| (k,v)::t -=> £ (k,v) :: helper f t
end

let keys m:(‘'k,’'v) list)
let values/ (m:('k,’'v) list)

‘k list = helper fst m
‘v 1list = helper snd m

/

The definition of this function
does not depend on operating over Let's make it work for ALL lists,

a list of bindings. It just passes not just lists of tuples!

each binding to the function f.

CIS120 / Spring 2012 17

Going even more generic

let rec helper (f:’a -> ‘b) (m:’a list)
‘b list =
begin match m with
| [1 -> []
| h::t -> (£ h) :: helper f t
end

let keys (m:('k,’v) list) : ‘k list = helper fst m

let values (m:(‘k,’'v) list) : ‘v lisﬁ/;zhelpi;fsnd m

£

‘a stands for (‘k*’v)
‘b stands for ‘k

fst : (‘k*'v) -> ‘k

CIS120 / Spring 2012 18

Transforming Lists

let rec transform (f:’a -> ‘b) (l:’'a list) : ‘b list =
begin match 1 with

| 1 => 1]
| h::t -> (£ h)::(transform f t)
end

List transformation (a.k.a. “mapping a function across a list”*)

* foundational function for programming with lists
* occurs over and over again
* part of OCaml standard library (called List.map)

Example of using transform:
transform is engr [“FNCE”;”CIS”;”ENGL”;"”DMD"”] =
[false;true; false;true]

*confusingly, many languages (including OCaml) use the terminology “map” for the function that
transforms a list by applying a function to each element. Don’t confuse List.map with “finite map”.

Transform examples

let £f1 (1 : string list) : string list =
transform String.uppercase 1

let £2 (1 : int 1list) : bool list =
transform (fun (x:int) -> x > 0) 1

let £3 (1 : (int*int) list) : int list =
transform (fun (x:(int*int) -> (fst x)*(snd x)) 1

fl [llall; llbll; IICII]
f2 1 0 ; -1; 1; -2]

£3 [(1,2); (3,4)]

CIS120 / Spring 2012 20

List processing

Another design pattern
for first-class functions

Refactoring code, again

* |sthere a pattern in the definition of these two functions?

let rec exists (1 : bool list) : bool =
begin match 1 with
| [1 -> false b _
| h :: £t => h || exists t Sase Icase.]
end imple answer when
\ the list is empty
let rec acid length (1 : id 1 st) : int =
Tecg;n_r:ai(;ch L combine step:
: Do something with
HIN -> + .
| x t 1 acid_length t < the head of the list
end .
and the recursive call

e Can we factor out that pattern using first-class functions?

CIS120 / Spring 2012 22

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with
| [1 -> base
| x :: t => combine x (fold combine base t)
end

let acid length (1 : acid 1list) : int =
fold (fun (x:acid) (y:int) -> 1 +y) 01
let exists (1 : bool list) : bool =
fold (fun (x:bool) (y:bool) -> x || y) false 1

* Fold (aka Reduce)
— Another foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (List.fold_right)

— Similar operations for other recursive datatypes (fold_tree)
CIS120 / Spring 2012 23

Functions as Data

We’ve seen a number of ways in which functions can be
treated as data in OCaml|

Present-day programming practice offers many more
examples at the “small scale”:

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

The idiom is useful at the “large scale”: Google’s MapReduce
— Framework for mapping across sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

