Programming Languages
and Techniques
(C1S120)

Lecture 19
Feb 27, 2012

Transition to Java

Objects, classes, and interfaces

Announcements

e HWO6 Due Thursday, Mar 1 at 11:59:59pm
— Grace period until Friday, Mar 2

* Note: For the Java portion of the course, we recommend
creating a new Eclipse workspace

— So that you don’t have to switch settings between OCaml/Java when
you move back and forth

Looking Back...

OCaml: What's Left

OCaml is not a very large language — we’ve actually seen most of its
important features. But we’ve omitted a few...

* Module system

— One of OCaml’s most interesting features is its excellent support for large-
scale programming

— We saw just the tip of the iceberg: structures and signatures
— Key feature: functors (functions from structures to structures)

* QObject system
— OCaml actually includes a powerful system of classes and objects
— We left them out to avoid confusion with Java’s way of doing things

* Miscellaneous handy type-system features

— e.g. “polymorphic variants” (used, for example, to support parameter
passing by name instead of by position)

— Type inference — almost all of the type annotations we’ve been using can
be omitted.

Recap: The Functional Style

e Coreideas:

value-oriented programming

immutable (persistent / declarative) data structures
recursion (and iteration)

functions as data

generic types for flexibility (i.e. ‘a list)

abstract types to preserve invariants (i.e. BSTs, queues)

e Good for:

simple, elegant descriptions of complex algorithms and/or data
parallelism, concurrency, and distribution
“symbol processing” programs (compilers, theorem provers, etc.)

Language Support for FP

“Functional languages” (OCaml, Standard ML, F#, Haskell,
Scheme) promote this style as a default and work hard to
implement it efficiently

“Hybrid languages” (Scala, Python) offer it as one possibility
among others

Mainstream “Object Oriented” languages (Java, C#, C++) favor
a different style by default

— But many common OO idioms and design patterns have a functional
flavor (e.g. the “Visitor” pattern is analogous to transform)

— And most of them are gradually adding features (like anonymous
functions) that make functional-style programming more convenient

— Best practices discourage use of imperative state

OCaml

VS. Java

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is _empty (t:'a tree) =
begin match t with
| Empty -> true

| Node(_ , ,) -> false
end
let t int tree = Node(Empty,3,Empty)
let ans bool = is empty t

CIS120 / Spring 2012

interface Tree<A> {
public boolean isEmpty();
}
class Empty<A> implements Tree<A> {
public boolean isEmpty() {
return true;
}
}

class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> 1lt;
private final Tree<A> rt;

Node (Tree<A> 1lt, A v, Tree<A>
this.lt = 1lt; this.rt = rt;

rt) {
this.v = v;

}

public boolean isEmpty() {
return false;
}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty();

Course Overview

* Declarative programming
— persistent data structures
— recursion is main control structure
— heavy use of functions as data

* |mperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

* Object-oriented programming
— pervasive “abstraction by default”

— mutable data structures / iteration
— heavy use of functions (objects) as data

Imperative programming

Java (and C, C++, C#) OCaml
Null is contained in (almost) ¢ No null. Partiality must be
every type. Partial functions made explicit with options.
can return null.
Code is a sequence of * Code is an expression that
statemgnts that d? has a value. Sometimes
something, sometimes computing that value has
using expressions to other effects.

compute values. :
* References are immutable

References are mutable by by default, must be

default, must be explicitly explicitly declared to be
declared to be constant mutable

OO programming

Java (and C, C++, C#)

Primitive notion of object
creation (classes, with
fields, methods and
constructors)

Flexibility through
extension:

Subtyping allows related
objects to share a common
interface

(i.e. button <: widget)

OCaml

Explicitly create objects
using a record of higher
order functions and hidden
state

Flexibility through

composition: objects can

only implement one

interface

(i.e. button = widget *
label controller *
notifier_controller).

Looking Forward

Today: A high-level tour of Java.

from OCaml to Java

"Objects"

IN

OCaml

type counter = {inc: unit->int;

dec: unit->int}
let newcounter () : counter =
let r = ref 0 in
{
inc = (fun () ->
r := !r + 1; !r);
dec = (fun () ->
r := !lr - 1; lr);
}
let ¢ = newcounter ()

;7 print _int (c.inc())
;7 print newline()
;7 print int (c.dec())
;7 print newline()

CIS120 / Spring 2012

Why is this an object?

= FEncapsulated local state
only visible to the methods
of the object

= QObjectis defined by what it
can do—Ilocal state does not
appear in the interface

» There is a way to construct
new object values that
behave similarly

Critique of Hand-Rolled Objects

* “Roll your own objects” made from records, functions, and
references are good for understanding...

type counter = {inc: unit->int; dec: unit->int}
let newcounter () : counter =
let r = ref 0 in
{
inc = (fun () -=> r := lr + 1; !r);
dec = (fun () -=> r := !lr - 1; !r)
}

e ...but not that good for programming
— minor: syntax is clunky (too many parens, etc.)
— major: OCaml’s record types are too rigid, cannot reuse functionality

type reset counter = {inc: unit->int; dec: unit->int;
reset : unit -> unit}

Java Objects and Classes

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— ohe or more constructors: code that is executed when the
object is created (optional)

Every Java object is an instance of some class

Can (optionally) implement an interface that
specifies it in terms of its operations

Objects in Java

public class Counter {

}

private int r;

public Counter
r = 0;

}

public int inc
r =r + 1;
return r;

}

public int dec
r=r - 1;
return r;

}

()

()

class declaration
class name

instance variable

1 constructor

{ methods object creation and use

public class Main {

public static void

main (String[] args) { FOnSUuFUN
Invocation

Counter c¢c = new Counter();

{

System.out.println(c.inc());

CIS120 / Spring 2012

} method call

Creating Objects

* Declare a variable to hold the Counter object
— Type of the object is the name of the class that creates it

* |nvoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c;
c = new Counter();

e ...ordeclare and initialize together (preferred)

Counter c¢ = new Counter();

Constructors with Parameters

: Constructor methods can take
public class Counter {

parameters
private int r;

Constructor must have the same

public Counter (int r0) ({ name as the class
r = r0;

}

public int inc () { object creation and use
r =r + 1;
return r;

public class Main {

}

public static void constructor

public int dec () { main (String[] args) { invocation

r =r - 1;
return r;

}

Counter ¢ = new Counter(3);

}

System.out.println(c.inc());

CIS120 / Spring 2012

Creating objects

* Every Java variable is mutable

Counter c;
c = new Counter(2);
c = new Counter(4);

e AlJava variable of reference type contains the special value
"null" before it is initialized

Counter c;
if (¢ == null) {
System.out.println ("null pointer");

}

425 Single = for assignment
Double == for equality testing

Using objects

* At any time, a Java variable of reference type can contain
either the special value “null” or a pointer into the heap
— i.e., a Java variable of reference type "T" is like an OCaml variable of
type "T option ref"
— The dereferencing of the pointer and the check for “null” are implicitly
performed every time a variable is used

let £ (co : counter option ref) : int = class Foo {
begin match !co with public int f (Counter c) {
| None -> return c.inc();
failwith "NullPointerException" }
| Some ¢ -> c.inc() }
end

* If null value is used as an object (i.e. with a method call) then
a NullPointerException occurs

Encapsulating local state

public class Counter {

// ris private

public Counter () {
r = 0;

private int r;

constructor and

} methods can
refertor
public int inc () {
r =r + 1;
return r; public class Main { other parts of the
} program can only access
public static void public members

public int dec () {
r =r - 1;

} return rj; Counter c¢c = new Counter();

main (String[] args) {

}

System.out.println(c.inc());

} method call

CIS120 / Spring 2012

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— public : accessible from anywhere in the program
— private : only accessible inside the class
e Design pattern: first cut
— Make all fields private
— Make constructors and methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

Interfaces

Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved

public interface Displaceable {
public int getX();
public int getY();
public void move(int dx, int dy);

}

No fields, no constructors, no
method bodies!

Implementing the interface

* Aclass that implements an interface provides appropriate
definitions for the methods specified in the interface

* That class fulfills the contract implicit in the interface

public class Point implements Displaceable {

private int x, y; &\\
public Point(int x0, int y0) {

interfaces

X = x0;
implemented

y = y0;
}
public int getX() { return x; }
public int getY() { return y; }

rnmhods public void move(int dx, int dy) {
required to _
, X = X + dx;
satisfy contract _
— s Y=Yyt dy;

}
}

