Programming Languages
and Techniques
(C1S120)

Lecture 20
Feb 29, 2012

Transition to Java |l

Smoothing the transition

DON’T PANIC

Eclipse set-up instructions in lab today/tomorrow

First Java homework assignment will be available Friday

It will be due Thursday, Mar 15t

Other Java resources:

Lecture notes from this week
CIS 110 lecture notes (http://www.cis.upenn.edu/~cis110)

Online Java textbook (http://math.hws.edu/javanotes/) linked from
“CIS 120 Resources” on course website

Piazza!

Caveats

Some aspects of Java involve quite a bit of detail

There is often much more to the story than presented in
the lectures (and more than needed for CIS 120).

We expect you to use various online and print resources
to fill in the details (and you can ask when in doubt)

But don't worry about details until you need them

The best way to learn details is to use them in solving a
problem

Java for OCaml| Programmers

Guy Steele, one of the
principal designers of Java

Xavier Leroy, one of the principal
designers of the OCaml language

CIS120 / Spring 2012 4

Recap

Object: A collection of related fields (or instance variables)

Class: A template for creating objects, specifying
— types and initial values of fields
— code for methods
— optionally, a constructor that is run when the object is first created

Interface: A “signature” for objects, describing a collection of
methods that must be provided by classes that implement the
interface

Object Type: Either a class or an interface (meaning “this
object was created from a class that implements this
interface”)

Interfaces

Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved

public interface Displaceable {
public int getX();
public int getY();
public void move(int dx, int dy);

}

No fields, no constructors, no
method bodies!

Implementing the interface

* Aclass that implements an interface provides appropriate
definitions for the methods specified in the interface

* That class fulfills the contract implicit in the interface

public class Point implements Displaceable {

private int x, y; &\\
public Point(int x0, int y0) {

interfaces

X = x0;
implemented

y = y0;
}
public int getX() { return x; }
public int getY() { return y; }

rnmhods public void move(int dx, int dy) {
required to _
, X = X + dx;
satisfy contract _
— s Y=Yyt dy;

}
}

Another implementation

public class Circle implements Displaceable {

private Point center;

private int radius;

public Circle(Point initCenter, int initRadius) {
center = initCenter;
radius = initRadius;

}

public int getX() { return center.getX(); }

public int getY() { return center.get¥(); }

public void move(int dx, int dy) {
center.move(dx, dy);

}
} Objects with different

local state can satisfy
the same interface

And another...

class ColorPoint implements Displaceable {

private Point p;
private Color c;

ColorPoint (int x0, int y0, Color cO0) {

p = new Point(x0,y0);
c = c0;

}

public void move(int dx, int dy) {
p.move(dx, dy);

}

public getX() { return p.getX(); }

public getY() { return p.get¥(); }

public Color getColor() { return c;

}

Flexibility:

Classes may contain
more methods than
the interface

Multiple interfaces

* Aninterface represents a point of view
...but there are multiple points of view

e Example: Geometric objects

— All can move (all are Displaceable)
— Some have Color (are Colored)

Colored interface

e Contract for objects that that have a color
— Circles and Points don’t
— ColorPoints do

public interface Colored {
public Color getColor();

}

Multiple Interfaces

class ColorPoint implements Displaceable, Colored {

private Point p;
private Color c;

ColorPoint (int x0, int y0, Color cO0) {

p = new Point(x0,y0);
c = c0;
}

public void move(int dx, int dy) {
p.move(dx, dy);
}

public getX() { return p.getX(); }
public getY() { return p.get¥(); }

public Color getColor() { return c;

}

Flexibility:

Classes may
implement multiple
interfaces

Interfaces as types

* Can declare variables of interface type
Displaceable d;

e Can assign any implementation to the variable

d = new ColorPoint(1l,2,green);

* ... but can only operate on the object according to

the interface
d.move(-1,1);

t d.getX() ..
. d.get¥Y() ..

R

Using interface types

* Interface variables can refer (during execution) to objects of
any class implementing the interface

* Point, Circle, and ColorPoint are all subtypes of Displaceable

Displaceable d0, dl, d2;

d0 = new Point(1l, 2);

dl = new Circle(new Point(2,3), 1);
d2 = new ColorPoint(-1,1,red);
d0.move(-2,0);

dl.move(-2,0);

d2.move(-2,0);

. d0.getX|()

= -1.0
. dl.getX() .. = 0.0
. d2.getX|() = =-3.0

Abstraction

* The interface gives us a single name for all the possible kinds
of moveable things. This allows us to write code that
manipulates arbitrary “displaceables”, without caring whether
it’s dealing with points or circles.

class DoStuff ({
public void moveItALot (Displaceable s) {
s.move(3,3);
s.move(100,1000);

s.move(1000,234651);
}

public void dostuff () {
Displaceable sl = new Point(5,5);
Displaceable s2 = new Circle(new Point(0,0),100);
moveIltALot(sl);
moveltALot(s2);

Java Core Language

Expressions vs. Statements

 OCamlis an expression language
— Every program phrase is an expression (and returns a value)

— The special value () of type unit is used as the result of expressions
that are evaluated only for their side effects

— Semicolon is an operator that combines two expressions (where the
left-hand one returns type unit)

— Value-oriented programming is the default

e Javais a statement language

— Two-sorts of program phrases: expressions (that compute values) and
statements (that don’t)

— Statements are terminated by semicolons
— Any expression can be used as a statement (but not vice-versa)
— Designed for iterative and imperative programming

Types

 Asin OCaml, Every Java expression has a type

* The type describes the value that an expression computes

Expression form Example Type

Variable reference X Declared type of variable
Object creation new Counter () Class of the object
Method call c.inc() Return type of method
Equality test X==y boolean

Assignment X=5 REDACTED, don’t use as an

expression!

Type System Organization

primitive types
(values stored
“directly” in the
stack)

structured types
(a.k.a. reference
types — values
stored in the heap)

generics

abstract types

OCaml

int, float, char, bool, ...

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

‘a list

module types (signatures)

Java

int, float, double, char, boolean,

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are a
special case of objects)

List<A>

interfaces
public/private modifiers

Java’s Primitive Types

int standard integers
byte, short, long other flavors of integers
char characters

float, double floating-point numbers

boolean true and false

Arithmetic & Logical Operators

OCaml Java

equality test

inequality
>,>=,<, <= >,>=,<,<= comparisons
+ + addition (and string concatenation)
- - subtraction (and unary minus)
multiplication
/ / division
remainder (modulus)

|ll

logical “not”

logical “and” (short-circuiting)

| | || logical “or” (short-circuiting)

CIS120 / Spring 2012 22

New: Operator Overloading

* The meaning of an operator is determined by the types of
the values it operates on
— Integer division
4/3 =1
— Floating point division
4.0/3.0=>1.3333333333333333

— Automatic conversion
4/3.0 = 1.3333333333333333

* Overloading is a much more general mechanism in Java

— we’ll see more of it later
— it should be used with care

Equality

like OCaml, Java has two ways of testing reference types for
equality:
— “pointer equality every object provides an “equals”
0l ==02 | method that “does the right thing”
— “deep equality” depending on the object

ol.equals(o2)

Normally, you should use == to compare primitive types and
“.equals” to compare objects

= is the assignment operator in Java
— behaves like <- in OCaml

Strings

String isa built in Java class
Strings are sequences of characters

mnin n=

"Java'" "3 Stooges" "BITIU"

+ means String concatenation (overloaded)
l|3l| + n n + "Stoogesl':":g Stoogesl

Text in a String is immutable (like OCaml)
— but variables that store strings are not

"OCaml";

— String y = Xx;

— Can't do anything to x so that y changes

— String x

Always use .equals to compare Strings

Pragmatics: Java identifiers

* Variable, class, interface, and method names are identifiers

* Alphanumeric characters or _ starting with a letter or _
— size
— myName
— MILES PER GALLON
— Al
— the _end
* Interpretation depends on context: variables and classes can
have the same name

Beware: Identifier abuse

Class, instance variable,
constructor, and method with
the same name...

public class Turtle ({
private Turtle Turtle;

public Turtle() { }

public Turtle Turtle (Turtle Turtle) {

return Turtle;

CIS120 / Spring 2012 27

Naming conventions

kind part-of-speech |identifier

class noun RacingCar
variable noun initialSpeed
constant | noun MAXIMUM SPEED
method verb shiftGear

CIS120 / Spring 2012

28

Static Methods

aka “functions”

Static methods: by example

public class Max {

if (x > vy) {

}
}

} Internally, call with just
} the method name

public static int max (int x, int y) {

return x; Must be defined in a class,
} else { but closest analogue to
return y; functions in OCaml

public static int max3(int x, int vy,
return max(max (X,Y), 2);

int z) {

if: then and else cases must
be statements

return statement
terminates a method call

CIS120 / Spring 2012

public class Main {

public static void
main (String[] args) {

System.out.println(Max.max(3,4));

} return; Externally, call with

y name of the class

Static == Decided at Compile Time
Dynamic == Decided at Run Time

Static vs. Dynamic Methods

Static Methods are independent of object values
— Similar to OCaml functions
— Cannot refer to the local state of the object (fields or dynamic methods)

Use static methods for:
— Non-00 programming

— Programming with primitive types: Math.sin(60), Integer.toString(3),
Boolean.valueOf(“true”)

— “public static void main”

Basic design guideline: put static methods in classes by themselves

|H

“Normal” methods (from Monday) are dynamic
— Need access to the local state of the object that invokes them
— Only know at runtime which method will get called

void moveTwice (Displaceable o) {
o.move (1l,1); o.move(l,1);

}

Method call examples

 C(Calling a dynamic method of another object that returns a number:

X = o.m() + 5;

* C(Calling a static method of another object that returns a number:

Xx = C.m() + 5;

 C(Calling a method of another class that returns void:

Static c.m(); Dynamic | o.m();

e Calling a static or dynamic method of the same class:

m(); x =m() + 5;

* C(Calling dynamic methods that return objects:

X
X

o.m().n();

o.m().n().x().y()-2().a().-b().c().d().e();

CIS120 / Spring 2012 33

