Programming Languages
and Techniques
(CIS120)

Announcements

Lecture 24
Mar. 16, 2012

Subtyping and Extension

HWO08 (Adventure game) posted soon
— Objects with mutable state
— Due Monday, Mar 26t

Midterm 2 is Friday, Mar. 30t in class
Mutable state (in OCaml and Java)
Objects (in OCaml and Java)

Reactive programming

Arrays

CIS120 / Spring 2012

Why Static Types?

Types and Subtyping

Types stop you from using values incorrectly

— 3.m()

— if (3) { return 1; } else { return 2; }
— 3 + true

— (new Counter()).m()

All expressions have types

-3+ 4 has type int
— “A".toLowerCase() has type String
— new ResArray() has type ResArray

How do we know if x.m() is correct? or x+3?

— depends on the type of x

— variable declarations specify types of variables
Type restrictions preserve the types of variables

— assignment "x = v" must be to values with compatible types

— methods "o0.m(3)" must be called with compatible argument types
HOWEVER: in Java, values can have multiple types....

CIS120 / Spring 2012




Subtyping

» Definition: Type A is a subtype of type B if A can do anything
that B can do. Type B is called the supertype of A.

* Example: A class that implements an interface is a subtype of
the interface

interface Area {
public double getArea ();
}
public class Circle implements Area {
private double r;
private Point p;
public Circle (double x0, double y0, double r0) {
r = r0; p = new Point(x0,y0);

public double getArea () {
return 3.14159 * r * r;

}
public double getRadius () { return r; }

}

CIS120 / Spring 2012

Subtyping and Variables

Subtypes and Supertypes

* A avariable declared with type A can store any object that is
a subtype of A

Area a = new Circle(l, new Point(2,3));

supertype of Circle subtype of Area

* Methods with parameters of type A must be called with
arguments that are subtypes of A

static void double m (Area x) {
return x.getArea() * 2;

}

C.m( new Circle(l, new Point(2,3)) );

CIS120 / Spring 2012

* Aninterface represents a point of view about an object

* Classes can implement multiple interfaces

interfaces

"Static" types vs. "Dynamic" classes

Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

classes

Types can have many different supertypes / subtypes

CIS120 / Spring 2012

* The static type of an expression is a type that describes what
we (and the compiler) know about the expression at compile-
time (without thinking about the execution of the program)

Displaceable x;

* The dynamic class of an object is the class that it was
constructed from at run time

.
X = new Point(1l,2) = [ ]
X

1

2

* In OCaml, we only had static types

* InJava, we also have dynamic classes because of objects
— The dynamic class will always be a subtype of its static type

CIS120 / Spring 2012




Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;

What is the static type of s1 on
line A?

} * What is the dynamic class of s1
when execution reaches A?

new Rectangle (1,2,1,1); * What is the static type of s2 on

Circle c¢ = new Circle (1,1,3); line B? ExtenSion

Area sl =r; // A *  What is the dynamic class of s2
Area s2 =c; // B when execution reaches B?

Rectangle r =

s2 = =r; 17c *  What type should we declare for
' 5 .

D x = asArea (r); x (in b!ank D)? . 1. Interface extension
__E__y = asArea (sl); *  What is the dynamic class of x?

) P «  What type should we declare for 2. Class extension (Simple inheritance)
sl =c¢ci F in blank E)? . .
sl =s2; //G v (in _an ) . 3. Object —the root of the type hierarchy
r=c; // H *  What is the dynamic class of y?
r=sl; //1I *  Which of the assignments on

lines F-I are well typed?

CIS120 / Spring 2012

Interface Extension

Interface Hierarchy

* Build richer interface hierarchies by extending existing sl Area class Point implements Displaceable {
interfaces. e " w // omitted
\\\ ,/, class Circle implements Shape {
public interface Displaceable { NS s . // omitted
bl tX(); .
gzsblz thYE ; ; The Shape type includes all Shape ilass Rectangle implements Shape {
- d the methods of Displaceable e S X
void move(double dx, double dy); and Area. plus the new : . .« // omitted
} L P Point Circle Rectangle }
getBoundingBox method.

public interface Area {

) double getarea();  Shape is a subtype of both Displaceable and Area.
» Circle and Rectangle are both subtypes of Shape, and, by

public interface Shape extends Displaceable, Area { transitivity, both are also subtypes of Displaceable and Area.

Rectangle getBoundingBox(); .
} * Note that one interface may extend several others.
Note the use of the “extends” |- — Interfaces do not necessarily form a tree, but the hierarchy has no

cycles.
keyword. v
CIS120 / Spring 2012 CIS120 / Spring 2012




Interface Extension Demo

See: Mainl.java

Simple Inheritance

In simple inheritance, the subclass only adds new fields or
methods.

Use simple inheritance to share common code among related
classes.

Example: Point, Circle, and Rectangle have identical code for

getX(), getY(), and move() methods when implementing
Displaceable.

CIS120 / Spring 2012

Class Extension: Inheritance

Classes, like interfaces, can also extend one another.

— Unlike interfaces, a class can extend only one other class.

The extending class inherits all of the fields and methods of its superclass,
and may include additional fields or methods.
— This captures the “is a” relationship between objects (e.g. a Car is a Vehicle).

— Class extension should never be used when “is a” does not relate the subtype
to the supertype.

class D {
private int x;
private int y;

public int addBoth() { return x + y; }
}

class C extends D {
private int z;

public int addThree() {return (addBoth() + z); }

// every C is a D

}

CIS120 / Spring 2012

Subtyping with Inheritance

Displaceable Area
/ \~~ ,"
\‘x\\\ ','1
Displaceablelmpl Il
RN Shape
/ 1
I', :
I”' =|
I'I’ I‘
I' :
Point Circle Rectangle
-Type Cis a subtype of D if D is reachable from C
_______ Extends by following zero or more edges upwards in the
hierarchy.
Implements
- e.g. Circle is a subtype of Area, but Point is not

CIS120 / Spring 2012




Inheritance: Constructors

Example of Simple Inheritance

* Contructors cannot be inherited (they have the wrong names!)
— Instead, a subclass invokes the constructor of its super class using the keyword ‘super’.

— Super must be the first line of the subclass constructor, unless the parent class
constructor takes no arguments, in which it is OK to omit the call to super (it is called
implicitly).

See: Main2.java

class D {
private int x;
private int y;
public D (int initX, int initY) { x = initX; y = inity; }
public int addBoth() { return x + y; }
}

class C extends D {
private int z;
public C (int initX, int initY, int initZ) {
super (initX, initY);
z = 1initZ;
}
public int addThree() {return (addBoth() + z); }
}

Other forms of inheritance

* Java has other features related to inheritance (some of which
we will discuss later in the course):

— A subclass might override (re-implement) a method already found in
the superclass.

— A class might be abstract —i.e. it does not provide implementations
for all of its methods (its subclasses must provide them instead)
* These features are hard to use properly and the need for
them arises in special cases
— Making reusable libraries
— Special methods: equals and toString

* We recommend avoiding all forms of inheritance (even
“simple inheritance”) when possible — prefer interfaces and
composition (see Main3.java).

Especially avoid overriding.

CIS120 / Spring 2012

CIS120 / Spring 2012




