Programming Languages
and Techniques
(C1S120)

Lecture 25
Mar 19, 2012

Subtyping and Dynamic Dispatch

Announcements

e HWO8 due next Monday

— Come by office hours today if you don’t have Java 6 installed

— Remember to use .equals for string comparison

Interface Extension
& Class Inheritance

Subtyping with Inheritance

Displaceable Area
Displaceablelmpl ~
AN Shape
/s’ 1 X

1

1

1

1

i

4 1
1

1

1

Point Circle Rectangle

-Type Cis a subtype of D if D is reachable from C

by following zero or more edges upwards in the
hierarchy.
Implements

------- Extends

- e.g. Circle is a subtype of Area, but Point is not

Inheritance: Constructors

* Contructors cannot be inherited (they have the wrong names!)
— Instead, a subclass invokes the constructor of its super class using the keyword ‘super’.

— Super must be the first line of the subclass constructor, unless the parent class

constructor takes no arguments, in which it is OK to omit the call to super (it is called
implicitly).

class D {
private int x;
private int y;
public D (int initX, int initY¥) { x = initX; y = initY; }
public int addBoth() { return x + y; }
}

class C extends D {
private int z;
public C (int initX, int initY, int initZ) {
super (initX, initY);
z = initZ;
}
public int addThree() {return (addBoth() + z); }

Object

public class Object {
boolean equals(Object o) {
.. // test for equality
}
String toString() {
.. // return a string representation

}
// other methods omitted

* Object is the root of the class tree.
— Classes that leave off the “extends” clause implicitly extend Object
— Arrays also implement the methods of Object
— This class provides methods useful for all objects to support (override these!)

* Object is also the top type of the subtyping hierarchy.

Subtyping

Object classes (form a tree)
P interfaces
i .-.._.-.-.-.-.....
TR T
: . ",
! Displaceable Area
! / ~\\‘\\ ,','
1 S ,/
. ‘\x\ e

Displaceablelmpl ™l
R Shape
/s 1

Point

Circle

Extends

Implements
Subtype by fiat

Recta ng|e - Interfaces extend (possibly many) interfaces

- Classes implement (possibly many) interfaces

- Classes (except Object) extend exactly one
other class (Object if implicit)

- Interface types are “subtypes by fiat” of Object

Other forms of inheritance

e Java has other features related to inheritance (some of which
we will discuss later in the course):

— A subclass might override (re-implement) a method already found in
the superclass

— A class might be abstract —i.e. it does not provide implementations
for all of its methods (its subclasses must provide them instead)

* These features are hard to use properly and the need for
them arises in special cases
— Making reusable libraries
— Special methods: equals and toString

 We recommend avoiding all forms of inheritance (even
“simple inheritance”) when possible — prefer interfaces and
composition (see Main3.java).

Especially avoid overriding.

The Java Abstract Stack Machine

1. Class tables
2. Constructors and “this”
3. Dynamic dispatch
4. Static class members

What about nonstatic methods?

What code gets run in a method invocation?

o.move(3,4);

When that code is running, how does it access the fields of
the object that invoked it?

X = x + dx;
When does the code in a constructor get executed?

What about inheritance?

Refinements to the Stack Machine

 Codeisstored in a class table, which is a special part of the heap:
— When a program starts, the JVM initializes the class table
— Each class has a pointer to its (unique) parent in the class tree
— A class stores the constructor and method code for its instances
— The class also stores static members

* Constructors:
— Allocate space in the heap
— (Implicitly) invoke the super class constructor, then run the constructor body

* Objects and their methods:

— Each object in the heap has a pointer to the class table of its dynamic (the one it
was created with via new).

— A method invocation “o.m(...)” uses O’s class table to “dispatch” to the
appropriate method code (might involve searching up the class hierarchy).

— Methods and constructors take an implicit “this” parameter, which is a pointer to
the object whose method was invoked. Fields& methods are accessed with this.

The ‘this’ Reference

Inside a non-static method, the variable this is a reference
to the object itself.

References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {
this.f = other.f;

}

An Example

public class Counter {
private int x;

public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get();

Example with Explicit this and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x
public void incBy(int d) { this.x = this.x + d; }
public int get() { return this.x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

}

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get();

Constructing an Object

Workspace

Decr d = new Decr(2);
d.dec();
int x = d.get();

Stack

Heap

Class Table

Object

String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating Space on the Heap

Workspace

Stack

super () ;
this.y = initY;

Decr d = _;
d.dec();
int x = d.get();

Invoking a constructor:

this

|

inity

L 2]

* allocates space for a new object

in the heap

* includes slots for all fields of all

ancestors in the class tree

(here: x andy)

* creates a pointer to the class —

this is the object’s dynamic type
* runs the constructor body after
pushing parameters and this

onto the stack

Note: fields start with a
“sensible” default
- 0 for numeric values
-null for references

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Calling super

Workspace Stack
super () ; x4
this.y = initY; int x = d.get();
this O
y | o
inity | 2|

Call to super:

* The constructor (implicitly) calls
the super constructor

* Remember that invoking a
method/constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace Stack
super () ; e
this.x = 0; int x = d.get();

this O
inity | 2|
Eﬂis.y = inity;

this O—

(Running Object’s default
constructor omitted.)

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a Field

Workspace

Stack

this.x = 0;

Decr d = _;
d.dec();
int x = d.get();

this O
inity | 2|
Eﬂis.y = inity;

this O—

Assignment into the this.x field

goes in two steps:

- look up the value of this in the

stack

- write to the “x” slot of that

object.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

__Assigning to a Field

Stack

Decr d = _;
d.dec();

int x = d.get();

this

inity

T
this.y = inity;

this

Assignment into the this.x field
goes in two steps:
- look up the value of this in the
stack
- write to the “x” slot of that
object.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack

. Decr d = _;
4 d.dec();

int x = d.get();

this O

ey | 2|

T
this.y = inity;

this *~—

Done with the call to “super”, so
pop the stack to the previous
workspace.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Continuing

Workspace

Stack

this.y = initY

Decr d = _;

d.dec();
int x = d.get();

this O

ey | 2|

Continue in the Decr class’s

constructor.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace

Stack

this.vy

2;

Decr d = _;
d.dec();

int x = d.get();

this

O

inity

L 2]

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a field

Workspace Stack

Decr d = _;
d.dec();

this.y = 2;

int x = d.get();

L 2]

Assignment into the this.y
field.

(This really takes two steps as we
saw earlier, but we’re skipping
some for the sake of brevity...)

Heap

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack

. Decr d = _;
4 d.dec();

int x = d.get();

this O
L 2|

ey | 2 |

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the this pointer).

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Returning the Newly Constructed Object

Workspa$/ Stack

Decr d = /

d.dec();
int x = d.get();

Continue executing the program.

\Heag

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating a local variable

Workspace Stack

d.dec(); d

int x = d.get();

Allocate a stack slot for the local
variable d. It’s mutable... (see the
bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable, we
often omit the bold boxes and just
assume the contents can be
modified.

Heap
s =

X 0

y | 2]

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Invoke the dec method on the
object. The code can be found by
“pointer chasing”.

This process is called dynamic
dispatch — which code is run
depends on the dynamic type of
the object. (In this case, Decr.)

Search through the
methods of the Decr,
class trying to find one
called dec.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace

Stack

this.incBy(-this.y);

L]

int x = d.get();

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments

(none in this case).

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Reading A Field’s Contents

Workspace Stack

this.incBy(-*.v); d I('I

int x = d.get();

this P

Heap
e

X 0
y—1 4|

Read from the y slot of the object.

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch, Again

Stack

int x = d.get();

this

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the incBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr,
class trying to find one
called incBy.

If the search fails,
(recursively) search the
parent class.

Class Table

Object

String toString(){..

boolean equals..

Counter
extends /Object
Counter (
void incBy(int d){..}

int get() {return x;}

Decr

extends Counte

Decr(int i

dec(){incBy(-y):}

Running the body of 1ncBy

Workspace

Stack

this.x

this.x + d;

int x = d.get();

this

this.x

It takes a few steps...
Body of incBy:
-reads this.x
- looks up d
-computes result this.x + d
- stores the answer (-2) in this.x

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack

d

int x = d.get();

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class tree again...

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After yet a few more steps...

Workspace

Stack

d

Done! (Phew!)

Class Table

Object

String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0;
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Summary: this and dynamic dispatch

 When object’s method is invoked, as in o.m(), the code that runs is
determined by o’s dynamic class.

— The dynamic class, which is just a pointer to a class, is included in the object
structure in the heap.

— If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table.

— This process is called dynamic dispatch.

* Once the code for m has been determined, a binding for this is pushed
onto the stack.

— The this pointer is used to resolve field accesses and method invocations
inside the code.

