Programming Languages
and Techniques
(C1S120)

Lecture 34
April 10, 2012

Swing lll: Inner Classes and OO refactoring



Announcements

HW 9 due tonight at 11:59:59pm
— Lab today is only GUI lab (i.e. save HW questions for OH)

HW 10 (Game Project) is available
— Due Tuesday April 24t at 11:59:59pm (last day of classes)

— Demo code includes inner classes (covered today) and mouse/
keyboard input (covered on Monday)

Bonus Lecture on Friday
— Consequences of “Code is Data”
— Not covered on homework or final exam

Max Scheiber’s band is playing at Fling, 2:45 in the quad



Swing Example

A case study in organizing GUI Applications

~Controls

Line

Square

Triangle

CIS 120 - Oval

Text




GUI Design Pattern

Separate Graphical Applications into three components

Model

— The “state” or data of the Application
— “Toplevel” class, such as “DrawingExample”

View
— How that state is presented to the user (could be in different ways)

— DrawingExampleCanvas

Controller
— How users interact with the model
— Swing components such as buttons and their event listeners
— DrawingExamplelListener



Refactoring for Extensibility

Already saw one example of refactoring:

We replaced these five fields of DrawingExample:

public
public
public
public
public

boolean
boolean
boolean
boolean
boolean

with this one:
public List<Shape> shapes

drawLine
drawSquare

drawTriangle

drawOval
drawText

false;
= false;
= false;
= false;
= false;

new LinkedList<Shape>();



Make canvas more flexible

public void paintComponent (Graphics gc) {

super .paintComponent (gc) ;

if (owner.drawLine) ({
gc.drawLine(10, 10, 100, 100);

}

if (owner.drawSquare) {
gc.drawRect (50, 10, 35, 35);

}

Canvas does not
need to know how

to draw all of the

public void paintComponent (Graphics gc) { shapes.
super.paintComponent (gc);
for (Shape shape : owner.shapes) {
shape.draw(gc) ;

}




What about the action listener?

public void actionPerformed(ActionEvent e) {

// Find out which button generated the event,

if (button.equals(owner.bl)) {
owner .shapes.add(new Line());

} else if (button.equals(owner.b2)) {
owner.shapes.add(new Square());

} else if (button.equals(owner.b3)) {
owner.shapes.add(new Triangle());

} else if (button.equals(owner.b4)) {
owner.shapes.add(new Oval());

} else if (button.equals(owner.b5)) {
owner.shapes.add(new Text());

}

// Notify Swing that the drawing panel needs to
be repainted

owner.drawingCanvas.repaint();




What about redundant code?

// Create the buttons
JButton bl, b2, b3, b4, b5;
bl = new JButton("Line");

b2 = new JButton("Square");
b3 = new JButton("Triangle");
b4 = new JButton("Oval");

b5 = new JButton("Text");

// Attach actions to the buttons.
bl.addActionListener (

new DrawingExamplelbListener(this, new Line()));
b2.addActionListener (

new DrawingExamplelbListener(this, new Square()));
b3.addActionListener (

new DrawingExamplelbListener(this, new Triangle()));
b4 .addActionListener (

new DrawingExamplelbListener(this, new Oval()));
b5.addActionListener (

new DrawingExamplelbListener(this, new Text()));




Inner Classes




Inner Classes

Useful in situations where two objects require “deep access”
to each other’s internals

Replaces tangled workarounds like “owner object” (as in the
drawing example)

— Solution with inner classes is easier to read

— No need to allow public access to instance variables of outer class

Also called “dynamic nested classes”



public class DrawingExample implements Runnable {
public List<Shape> shapes = new LinkedList<Shape>();

private DrawingPanel drawingPanel; Without Inner
public void run() { classes

JFrame frame = new JFrame('"Drawing Bxample");

drawingPanel = new DrawingPanel(this);

Each class has a

} reference

class DrawingCanvas extends JComponent to the other
private DrawingExample owner;
public DrawingCanvas (DrawingExample p) { owner = p; }
public void paintComponent (Graphics gc) {
super.paintComponent(gc);

for (Shape shape : owner.shapes) {

shape.draw(gc); Needs to access

toplevel field

11




public class DrawingExample implements Runnable {

public List<Shape> shapes = new LipkedList<Shape>(); With Inn

private DrawingPanel drawingPanel;

classes

public void run() { shapes is private

JFrame frame = new JFrame('"Drawing Example

drawingPanel = new DrawingPanel();

)

No explicit reference

class DrawingCanvas extends JComponent
public DrawingCanvas () { }
public void paintComponent (Graphics gc) {

super.paintComponent(gc) ;

for (Shape shape : shapes)«{

shape.draw(gc);

to frame from canvas

Inner class can
access toplevel

private members
directly

er

12




Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outervVar = 6; Name of this class is
} _ Outer.Inner
public class Inner { (which is also the static

private int innerVar; ' _
public Inner(int z) type of objects that this
class creates)

innerVar = outerVar + z;

}

Reference from inner

class to instance variable
bound in outer class

13




Object Creation

Inner classes can refer to the instance variables and methods of the
outer class

Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer a = new Outer();
Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner();‘v/

14




Anonymous Inner class

* New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.

15



Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml|
first-class functions

* Both create "delayed computation” that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final



