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Swing lll: Inner Classes and OO refactoring



Announcements

HW 9 due tonight at 11:59:59pm
— Lab today is only GUI lab (i.e. save HW questions for OH)

HW 10 (Game Project) is available
— Due Tuesday April 24t at 11:59:59pm (last day of classes)

— Demo code includes inner classes (covered today) and mouse/
keyboard input (covered on Monday)

Bonus Lecture on Friday
— Consequences of “Code is Data”
— Not covered on homework or final exam

Max Scheiber’s band is playing at Fling, 2:45 in the quad



Swing Example

A case study in organizing GUI Applications

~Controls

Line

Square

Triangle

CIS 120 - Oval

Text




GUI Design Pattern

Separate Graphical Applications into three components

Model

— The “state” or data of the Application
— “Toplevel” class, such as “DrawingExample”

View
— How that state is presented to the user (could be in different ways)

— DrawingExampleCanvas

Controller
— How users interact with the model
— Swing components such as buttons and their event listeners
— DrawingExamplelListener



Refactoring for Extensibility

Already saw one example of refactoring:

We replaced these five fields of DrawingExample:

public
public
public
public
public

boolean
boolean
boolean
boolean
boolean

with this one:
public List<Shape> shapes

drawLine
drawSquare

drawTriangle

drawOval
drawText

false;
= false;
= false;
= false;
= false;

new LinkedList<Shape>();



Make canvas more flexible

public void paintComponent (Graphics gc) {

super .paintComponent (gc) ;

if (owner.drawLine) ({
gc.drawLine(10, 10, 100, 100);

}

if (owner.drawSquare) {
gc.drawRect (50, 10, 35, 35);

}

Canvas does not
need to know how

to draw all of the

public void paintComponent (Graphics gc) { shapes.
super.paintComponent (gc);
for (Shape shape : owner.shapes) {
shape.draw(gc) ;

}




What about the action listener?

public void actionPerformed(ActionEvent e) {

// Find out which button generated the event,

if (button.equals(owner.bl)) {
owner .shapes.add(new Line());

} else if (button.equals(owner.b2)) {
owner.shapes.add(new Square());

} else if (button.equals(owner.b3)) {
owner.shapes.add(new Triangle());

} else if (button.equals(owner.b4)) {
owner.shapes.add(new Oval());

} else if (button.equals(owner.b5)) {
owner.shapes.add(new Text());

}

// Notify Swing that the drawing panel needs to
be repainted

owner.drawingCanvas.repaint();




What about redundant code?

// Create the buttons
JButton bl, b2, b3, b4, b5;
bl = new JButton("Line");

b2 = new JButton("Square");
b3 = new JButton("Triangle");
b4 = new JButton("Oval");

b5 = new JButton("Text");

// Attach actions to the buttons.
bl.addActionListener (

new DrawingExamplelbListener(this, new Line()));
b2.addActionListener (

new DrawingExamplelbListener(this, new Square()));
b3.addActionListener (

new DrawingExamplelbListener(this, new Triangle()));
b4 .addActionListener (

new DrawingExamplelbListener(this, new Oval()));
b5.addActionListener (

new DrawingExamplelbListener(this, new Text()));




Inner Classes




Inner Classes

Useful in situations where two objects require “deep access”
to each other’s internals

Replaces tangled workarounds like “owner object” (as in the
drawing example)

— Solution with inner classes is easier to read

— No need to allow public access to instance variables of outer class

Also called “dynamic nested classes”



public class DrawingExample implements Runnable {
public List<Shape> shapes = new LinkedList<Shape>();

private DrawingPanel drawingPanel; Without Inner
public void run() { classes

JFrame frame = new JFrame('"Drawing Bxample");

drawingPanel = new DrawingPanel(this);

Each class has a

} reference

class DrawingCanvas extends JComponent to the other
private DrawingExample owner;
public DrawingCanvas (DrawingExample p) { owner = p; }
public void paintComponent (Graphics gc) {
super.paintComponent(gc);

for (Shape shape : owner.shapes) {

shape.draw(gc); Needs to access

toplevel field
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public class DrawingExample implements Runnable {

public List<Shape> shapes = new LipkedList<Shape>(); With Inn

private DrawingPanel drawingPanel;

classes

public void run() { shapes is private

JFrame frame = new JFrame('"Drawing Example

drawingPanel = new DrawingPanel();

)

No explicit reference

class DrawingCanvas extends JComponent
public DrawingCanvas () { }
public void paintComponent (Graphics gc) {

super.paintComponent(gc) ;

for (Shape shape : shapes)«{

shape.draw(gc);

to frame from canvas

Inner class can
access toplevel

private members
directly

er
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Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outervVar = 6; Name of this class is
} _ Outer.Inner
public class Inner { (which is also the static

private int innerVar; ' _
public Inner(int z) type of objects that this
class creates)

innerVar = outerVar + z;

}

Reference from inner

class to instance variable
bound in outer class
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Object Creation

Inner classes can refer to the instance variables and methods of the
outer class

Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer a = new Outer();
Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner();‘v/
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Anonymous Inner class

* New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.
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Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml|
first-class functions

* Both create "delayed computation” that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final



