Programming Languages
and Techniques
(CIS120)

Lecture 35
April 16, 2012

Swing IV: Mouse and Keyboard Input

Announcements

* Lab this week is review (BRING QUESTIONS)

* Game Project is out, due Tuesday April 24th

— If you want to do a game other than one of the ones listed, send email
to tas120@seas.upenn.edu



Paint

(o) Point () Line

Mouse and Keyboard interaction

Basic structure

Main frame for application (class Paint) the MODEL
Drawing panel (class Canvas, inner class of Paint) the VIEW

Control panel (class JPanel)
— Contains radio buttons for interacting with the program
— (part of) the CONTROL

Paint class contains the state of the program

— List of shapes to draw

— The current color (will always be BLACK today)

— References to Ul components: canvas, modeToolbar

How can users update that state?




Mouse Interaction

Basic Mouse Interaction

* Copy OCaml structure and add modes to the model
public enum Mode {

PointMode, LineStartMode, LineEndMode
}

private Mode mode = Mode.PointMode;

* Button press switches between PointMode and LineStartMode
* Mouse click in PointMode =» add a new point to the list of shapes

* Mouse click in LineStartMode = remember location, switch to
LineEndMode

* Mouse click in LineEndMode = add a new line to list of shapes,
switch to LineStartMode



Drag-and-drop

* Implement drag-and-drop lines

1. When the button is pressed, record the current mouse location as a
point, change the mode to LineEndMode and store the current point

2. Asthe mouse is dragged with the button pressed, set preview to be a
line from the stored point to the current position of the mouse

3. When the button is released, update the mode to LineStartMode, set
preview to null, and add the new line to the list of actions

* In OCaml, single event listener for all events

* InJava, things are a bit more sophisticated...

Two kinds of mouse listeners

interface MouseListener extends EventListener {
public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);




Lots of boilerplate

There are seven methods in the two interfaces.
We only want to do something interesting for three of them.
Need "trivial" implementations of the other four to

implement the interface...

public
public
public
public

void
void
void
void

mouseMoved (MouseEvent e) { return; }

mouseClicked(MouseEvent e) { return; }
mouseEntered(MouseEvent e) { return; }
mouseExited(MouseEvent e) { return; }

* Solution: MouseAdapter class

* Implements all seven methods trivially

* Subclasses override only the ones they want.

Adapter classes:

* Swing provides a collection of abstract event adapter classes

These adapter classes implement listener interfaces with

empty, do-nothing methods

To implement a listener class, we extend an adapter class and

override just the methods we need

private class Mouse extends MouseAdapter {

public void mousePressed(MouseEvent e) { .. }
public void mouseReleased(MouseEvent e) { .. }
public void mouseDragged(MouseEvent e) { .. }



