Programming Languages
and Techniques
(C1S120)

Lecture 36
April 18, 2012

Swing IV: Mouse and Keyboard Input

Announcements

e Lab this week is review (BRING QUESTIONS)

* Game Project is out, due Tuesday April 24t

— If you want to do a game other than one of the ones listed, send email
to tas120@seas.upenn.edu

* Final Exam
— Date: Tuesday, May 8t
— Time: 9:00 AM-11:00 AM
— Place: SKIR AUD
— Review session: TBA during finals

(9 Point () Line

Mouse and Keyboard interaction

Basic structure

Main frame for application (class Paint) the MODEL
Drawing panel (class Canvas, inner class of Paint) the VIEW

Control panel (class JPanel)
— Contains radio buttons for interacting with the program
— (part of) the CONTROL

Paint class contains the state of the program

— List of shapes to draw
— The current color (will always be BLACK today)
— References to Ul components: canvas, modeToolbar

How can users update that state?

Keyboard Interaction

Keyboard Interaction

How to make the program responsive to keyboard input?

Concept: keyboard focus
— A “Focusable” Ul Component is one that can respond to keyboard input

— Java method “requestFocusinWindow” gives the focus to a particular
component

— Registered KeyListeners for the component react when it is in focus

KeyListener Interface

— void keyPressed(KeyEvent e)
Invoked when a key has been pressed

— void keyReleased(KeyEvent e)
Invoked when a key has been released
— void keyTyped(KeyEvent e)
Invoked when a key has been typed

Use KeyAdapter to easily make an instance of this interface

Paint: Comparison with OCaml

How does our treatment of shape drawing in Java
compare with the OCaml| GUI project?

Java Design Summary

public interface Shape {
public void draw(Graphics gc);
h

Interface describes what
shapes can do

public class PointShape implements Shape { .. } Classes describe how

public class LineShape implements Shape { .. }

to draw themselves

private class Canvas extends JPanel {
public void paintComponent(Graphics gc) {

super.paintComponent(gc);
for (Shape s : actions)

s.draw((Graphics2D)gc);
if (preview != null)

preview.draw((Graphics2D)gc);

Canvas uses dynamic
dispatch to draw the shapes

type point = int * int
type shape =
| Point of Getx.color * int * point

| Line of Gectx.color * int * point * point

(* Repaint function for displaying the canvas. *)
let repaint (g:Gctx.t) : unit =
let actions = List.rev paint.shapes in
let drawit d =
begin match d with
| Point (c,t,p) ->
Gctx.draw points (set params g c t) p
| Line (c,t,pl,p2) ->
Gctx.draw line (set params g c t) pl p2
end in

LList.iter drawit actions

CIS 120

Comparison with OCaml|

How does our treatment of shape drawing in the Java Paint
example compare with the OCaml GUI project?

Java:
— Interface Shape for drawable objects
— Classes implement that interface
— Canvas uses dynamic dispatch to draw the shapes
— Add more shapes by adding more implementations of "Shape"

OCaml
— Datatype specifies variants of drawable objects

— Canvas uses pattern matching to draw the shapes
— Add more shapes by adding more variants, and modifying drawit

Datatypes vs. Objects

Datatypes

e Focus on how the data is
stored

* Easy to add new operations

e Hard to add new variants

e Best for: situations where
the structure of the data is
fixed (i.e. BSTs)

CIS 120

Objects

 Focus on what to do with
the data

e Easy to add new variants

 Hard to add new operations

 Best for: situations where
the interface with the data
is fixed (i.e. Shapes)

What about Modes?

Is Enum the best way to represent them?

