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Swing IV: Mouse and Keyboard Input



Announcements

e Lab this week is review (BRING QUESTIONS)

* Game Project is out, due Tuesday April 24t

— If you want to do a game other than one of the ones listed, send email
to tas120@seas.upenn.edu

* Final Exam
— Date: Tuesday, May 8t
— Time: 9:00 AM-11:00 AM
— Place: SKIR AUD
— Review session: TBA during finals
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Mouse and Keyboard interaction



Basic structure

Main frame for application (class Paint) the MODEL
Drawing panel (class Canvas, inner class of Paint) the VIEW

Control panel (class JPanel)
— Contains radio buttons for interacting with the program
— (part of) the CONTROL

Paint class contains the state of the program

— List of shapes to draw
— The current color (will always be BLACK today)
— References to Ul components: canvas, modeToolbar

How can users update that state?



Keyboard Interaction




Keyboard Interaction

How to make the program responsive to keyboard input?

Concept: keyboard focus
— A “Focusable” Ul Component is one that can respond to keyboard input

— Java method “requestFocusinWindow” gives the focus to a particular
component

— Registered KeyListeners for the component react when it is in focus

KeyListener Interface

— void keyPressed(KeyEvent e)
Invoked when a key has been pressed

— void keyReleased(KeyEvent e)
Invoked when a key has been released
— void keyTyped(KeyEvent e)
Invoked when a key has been typed

Use KeyAdapter to easily make an instance of this interface



Paint: Comparison with OCaml

How does our treatment of shape drawing in Java
compare with the OCaml| GUI project?




Java Design Summary

public interface Shape {
public void draw(Graphics gc);
h

Interface describes what
shapes can do

public class PointShape implements Shape { .. } Classes describe how

public class LineShape implements Shape { .. }

to draw themselves

private class Canvas extends JPanel {
public void paintComponent(Graphics gc) {

super.paintComponent(gc);
for (Shape s : actions)

s.draw((Graphics2D)gc);
if (preview != null)

preview.draw((Graphics2D)gc);

Canvas uses dynamic
dispatch to draw the shapes




type point = int * int
type shape =
| Point  of Getx.color * int * point

| Line of Gectx.color * int * point * point

(* Repaint function for displaying the canvas. *)
let repaint (g:Gctx.t) : unit =
let actions = List.rev paint.shapes in
let drawit d =
begin match d with
| Point (c,t,p) ->
Gctx.draw points (set params g c t) p
| Line (c,t,pl,p2) ->
Gctx.draw line (set params g c t) pl p2
end in

LList.iter drawit actions
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Comparison with OCaml|

How does our treatment of shape drawing in the Java Paint
example compare with the OCaml GUI project?

Java:
— Interface Shape for drawable objects
— Classes implement that interface
— Canvas uses dynamic dispatch to draw the shapes
— Add more shapes by adding more implementations of "Shape"

OCaml
— Datatype specifies variants of drawable objects

— Canvas uses pattern matching to draw the shapes
— Add more shapes by adding more variants, and modifying drawit



Datatypes vs. Objects

Datatypes

e Focus on how the data is
stored

* Easy to add new operations

e Hard to add new variants

e Best for: situations where
the structure of the data is
fixed (i.e. BSTs)
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Objects

 Focus on what to do with
the data

e Easy to add new variants

 Hard to add new operations

 Best for: situations where
the interface with the data
is fixed (i.e. Shapes)



What about Modes?

Is Enum the best way to represent them?




