Programming Languages
and Techniques
(C1S120)

Lecture 37
April 23, 2012

Recap

Game Project

* Due Tuesday at Midnight
— Submit as many times as you like, only the last one will be graded
— Normal late policy (10 points per day, up to two days)

* Schedule a demo session with your TA

— See assignment webpage for grading rubric. Be prepared to answer
guestions about your game according to this rubric.

Grade database

Check your scores online for errors
— Homework 1-9

— Lab attendance
— Midterms 1 & 2

Send mail to tas120 if you are missing any grades.

You are looking at the same database | will use to calculate

final grades.

— Homework 50%
— Labs 8%
— First midterm 12%

— Second midterm 12%

— Final exam 18%

FINAL EXAM

Tuesday May 8th, 9-11AM

— Skirkanich Auditorium

Comprehensive exam over course concepts:

— OCaml material (though we won’t worry much about syntax)
— Java material

— all course content

Closed book

— One letter-sized, personally handwritten sheet of notes allowed

TA Review Session:
— Sunday May 6™, 6-8PM, Wu & Chen
— Review material posted on web page

CIS 120 Concepts

Design Recipe

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

Unit Testing

* Concept: write tests before coding
— "test first" methodology

 Examples:
— Simple assertions for declarative programs (or subprograms)
— Longer (and more) tests for stateful programs / subprograms
— Informal tests for GUIs (can be automated through tools)

e Why?
— Tests clarify the specification of the problem.
— Thinking about tests informs the implementation.

— Tests also helps with refactoring (let you know that you haven't
broken anything)

Persistent data structures

 Concept: Store datain . ent
Recursion is the natural way of

computation as trans computing a function f(t) when t is

° Examples: immutable an inductive data type: 3),

images in Java (HW7) _
1. Determine the value of f for

the base case(s).

2. Show how to compute the
value of f for larger cases by
combining the results of
recursively calling f on smaller t
cases. aces

« Why?

— Simple model of c

— Simple interfac
communicati
are explici

— Recursion amenable to mathematical analysis (CIS 121)
— Have all intermediate values available

CIS120 / Spring 2012

Trees

Lists (i.e. “unary” trees)
Simple binary trees

Trees with invariants: e.g.
binary search trees

Quad trees: spatial search

Widget trees: spatial search
+ event routing

Swing Components

Trees are ubiquitous in CS:
— file system folders

— URLs

— hierarchy

let rec length (l:int list)
begin match 1 with
| 11 >0
| ::#1 => 1 + length(tl)

: int =

Apes
|

ots
@1Iyandlots

border | .handle e
hP, ir_.handlee
bord>er hbair handle e

label space borden | .handle e

label |, .handle e

Mutable Data in Persistant Structures

Concept: Some data is ephemeral. Computation based on
modifications of that data over time, even though the
structure of that data doesn’t change.

Examples: Nbody simulation(HW4), arrays and images (HW
6), Characters (HW 8), many game logics (HW10)

Why?

— Common in OO0 programming, which
simulates the transformations that objects
undergo when interacting with their
environment

— Necessary for event-based programming,
where different parts of the application
must communicate via shared state

Mutable data structures

Concept: Some data structures are ephemeral. Computation based
on modifications of those data structures over time.

Examples: Queues, Deques (HW5), some GUI state (HW6/HW10),
Dynamic Arrays, Dictionaries (HW9)

Why?

— Common in OO programming, which simulates the transformations that
objects undergo when interacting with their environment

— Necessary for event-based programming, where different parts of the
application must communicate via shared state

— Fundamental programming style for Java libraries (collections, etc.)

head _ v 1 J v 2

tail | \ next Il next |

A queue with two elements

First-class computation

Concept: code is a kind of data that can be defined in
functions or methods, stored in data structures, and passed to
other functions.

Examples: map, fold (HW4), pixel transformer (HW7), Event
listeners (HW6, HW10), dynamic dispatch

cell.addMouselListener (new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
selectCell(cell);

}
})s

Why?
— Allows more flexibility in the structure of code, can factor out design
patterns that differ only in certain computations

— Necessary for reactive programming, where data structures store the
"reactions'" to various events

Types, Generics and Subtyping

* Concept: Static type systems define interfaces and prevent
errors. Every expression has a static type, and OCaml/Java use

the types to rule out buggy programs. Generics and subtyping
make types more flexible and allow for code reuse.

let rec contains (x:'a) (l:'a list) : bool =
begin match 1 with
| [1 -> false
| h::tl -> x = a || (contains x tl)
end

* Why?
— Types make the interface explicit (and checked by the compiler)

— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring. Type checking ensures that basic invariants
about the program are maintained as a program is modified.

Types and Refactoring

® 00 Google+ 8
+ g https://plus.google.com/ ¢ Google @

Don Stewart Apr21, 2012 - Mobie - Public

Modified 700 lines across 70 files.
Once it typed checked, it worked first time. #types

a o RASRD -

Hide comments 2

"§" Don Stewart Apr21,2012 +2
Upside is early beer o'clock - thank you, mr. type checker.

Daniel Nugent Apr21, 2012
Noice! Where you been drinking since you transplanted?
Hangouts
- Felipe Almeida Lessa Apr21, 2012
j==# And that's how you do it! =)

Christopher Done Apr 21,2012 +17
Scumbag Haskeller:

Refactors whole code base.
Program still works.

i »w] Robert Harper Yesterday 12:12 AM
but of course!

CIS120 / Spring 2012

Abstract types and encapsulation

* Concept: Type abstraction hides the actual implementation of
a datastructure, describes a datastructure by its interface
(what it does vs. how it is represented)

 Examples: Set/Map interface (HW3), Queues in OCaml and
Java, encapsulation and access control (HW8)

Invariants are a crucial way of ~tation without modifying clients
structuring code and data: ——aqriants about the

1. Establish the invariants when
you create the structure.

2. Preserve the invariants when
you modify the structure.

Sequences, Sets and Finite Maps

Specific examples of abstract data types: sequences, sets and
finite maps

Examples: HW3, Java Collections, HWO09
Why?

— These abstract data types come up again and again in computer
science

— Need aggregate data structures (collections) no matter what language
you are programming in

Dictionary

— Need to be able to choose - —= —
orrector <« --- ou need to write
the data structure with 1
h . h t '['I FileCorrector /|
t € rlg semantics SwapCorrector
: SpellChecker SpellCheckerRunner
Levenshtein
Token T

You run the
TokenScanner spell checker

with this

Lists, Trees, BSTs, and Queues

* Concept: specific implementations for abstract types

 Examples: HW2-5, Java Collections
e Why?
— Need some concrete implementation of the abstract types

— Different implementations have different trade-offs. Need to
understand these trade-offs to use them well. (More in CIS 121!)

— For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.
interface Set {boolean isEmpty(); ...}

’head m/\c\ v 1 v . 2 J
’tail [:] next Er next m\
_"/

A queue with two elements

CIS120 / Spring 2012

——
-
Cme | 3| e

—
Lk

L.

e
-
—
W
Lo

L.

=

-

——
-

SENN I E
oo
i ,.
i m
|
1A
e DERE
Ll
}
I
|
___:m_:
i
}
I

.E@_

E——
—————

-

e —

S w—

Event-Driven programming

Concept: Structure a program by associating "handlers" that
run in reaction to program events. Handlers typically interact
with the rest of the program by modifying shared state.

Examples: GUI programming in OCaml and Java

Why?
— Practice with reasoning about
shared state
— Practice with first-class functions

— Necessary for programming with
Swing

X/ Caml graphics

WA \’;"';\/]\;\/a‘\’
@ A
P
EXTRA DINDSAURS = EXTRA AWESOME
[CPaint] [OLine] [OEllipse] [Thick lines| |O Copy| [O Paste

W 0@ E @ O E @ Text buffer:[EXTRA DINOSAURS = EXTRA AUESONE]

Abstraction

Concept: Don't Repeat Yourself. Find some way to generalize
the code that you write to apply to more situations

Examples: Functions/methods, generics, higher-order
functions, interfaces, subtyping, abstract classes

Why?
— If you only write your code once, you only have to debug it once
— Makes code easier to extend, can reuse the same code many times

— Makes code easier to read, if parts of your program are meant to be
similar, you can tell by reading the program

Why some other language?

* Experience with learning a new language
* Perspective about language-independent concepts

* Account for varying degrees of experience in the same class

...but, why OCaml?

wcalull

CIS120 / Spring 2012

Rich, orthogonal vocabulary

In Java, primitive types, arrays, objects

In OCaml, primitive types, arrays, objects, datatypes
(including lists, trees, and options), records, refs and first-class
functions and abstract types

All of the above can be implemented in Java, but untangling
various use cases of objects is subtle

Concepts (like generics) can be studied in isolation, fewer
intricate interactions with the rest of the language

Functional Programming

In Java, every data structure is mutable by default

In OCaml, persistent data structures are the default.
Furthermore, the type system keeps track of what is and is
not mutable

Advantages of immutable/persistent data structures
— Don't have to keep track of aliasing. Interface to the data structure is simpler

— Often easier to think in terms of "transforming" data structures than
"modifying" data structures

— Simpler implementation (Compare lists and trees to queues and deques)
— Powerful evaluation model (substitution + recursion).

The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. At that time, | was
designing the first comprehensive type system for
references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage
in the last forty years. "

Sir Tony Hoare, QCon, London 2009

CIS120 / Spring 2012

Better interfaces: Optional values

In Java, optional values are the default. Any reference type
could be null.

In OCaml, references are non-null by default and optional
values must be specified by the programmer. Only values of
type 'a option can be None.

In Java, every method must specify what it does if its
arguments are null. Many of them don't.

In OCaml, the type of a method tells you whether an
argument may be null. We didn't have to think about optional
values until homework 5!

Fundamental abstract types

An abstract type is defined by its interface not its
implementation.

Flexibility: interface can change without modification to
clients

Security: implementation invariants can be preserved

In OCaml, direct expression of abstract data types through
modules and signatures

In Java, make types abstract via access modifiers (private),
provide flexibility through interfaces

Object Oriented Programming

* Provides a different way of decomposing programs

* Basic principles:
— Encapsulation of local, mutable state
— Inheritance to share code
— Dynamic dispatch to select which code gets run

Welcome to the Adventure Game.
Type “"help” at any time to get a list of available commands.

You are in the ballroom.

There are exits to the south and east.
You have 10 health and 7 coins.

>>>

* but why Java?

III

“Real” Programming Ecosystem

* Industrial strength tools: ((
— Eclipse :
— JUnit testing framework e Java

R
* Libraries:) SN

— Swing
_ Collections ‘ &« C ff @ docs.oracle.com/javase/6/docs/api/ ks @ Q

™ ' |
Java™ Platform 0 [T Package Class Use Tree Deprecated Index Help Java™ Platform 0

- I/O I i b ra I"I es Standand £d.0 PREV NEXT FRAMES NO FRAMES Standard Ed. 6
All Classes

— Packages - Java™ Platform, Standard Edition 6

java.applet v API Specification
\ — it

CertPathValidatorSpi This document is the API specification for version 6 of the Java™ Platform, Standard

CertSelector Edition.

CertStore

CertStoreException m See:

CertStoreParameters ’

CertStoreSpi

ChangedCharSetException

ChangeEvent kag

ChangelListener Pac id

Channel Provides the classes necessary to crea

ChannelBinding java.applet applet and the classes an applet uses t

Channels . s
Character communicate with its applet context.

Character.Subset Contains all of the classes for creating
Character.UnicodeBlock java.awt interfaces and for painting graphics ar
CharacterCodingException images.

CharacterData
Characterlterator | |java.awt.color Provides classes for color spaces.

Characters 4 A s
CharArravReader v Provides interfaces and classes for v
|

< » B RS

8 006 / [=overview ava Platform SE6) * | 5

)

Description

CIS120 / Spring 2012

What Next?

 (Classes:

* Undergraduate research

CIS 121, 262, 320 — data structures, performance, computational
complexity

CIS 19x — programming languages
e C++, CH, Python, Haskell, Ruby on Rails, iPhone programming
CIS 240 — lower-level: hardware, gates, assembly, C programming
CIS 341 — compilers (projects in OCaml)
CIS 371, 380 — hardware and OS’s

And h | women in computer science
Nnad much more!

data hackathon sept 16-18 \

pennapps ole
dining philosopher‘s

NN

The Craft of Programming

* The Pragmatic Programmer: |)I! ']'m v
AT ('

R -5’ : \
Proorammei

From Journeyman to Master
by Andrew Hunt and David Thomas

— Not about a particular programming language, '
it covers style, effective use of tools, and P

good practices for developing programs.

\ndrew Hunt
David Thomas

Joshua Bloch s

= * Effective Java
Effective Java by Joshua Bloch

Second Edition

— Technical advice and wisdom about using Java for
building software. The views we have espoused in
this course share much of the same design
philosophy.

NS
D Sun Java

Parting Thoughts

* Improve CIS 120:

— End-of-term survey link will be sent soon
— Penn Course evaluations also provide useful feedback
— We take them seriously, please complete them!

|£ | Image Processing > == ﬁl

RotateCW

RotateCCW

Mirror vertical

Mirror horizontal

Simple transform

Contrast

Reduce palette

Blur

Finally: Thanks!

-

=]

ﬂ
Il

let rec length (l:int list) :
begin match 1 with
| 11 ->0
| _::tl -> 1 + length(tl)
end

ACAT | AAGA

EXTRA DINOSAURS = EXTRA AWESOME

You are in the ballroom.

There are exits to the south and east.
You have 10 health and 7 coins.
>>>

| | Image Processing —_4
Load new image Save image Undo Quity ‘ <
RotateCW Dictionary
—_— kudos only
RotateCCW I altypsiof ST
Corrector <« --- posliesciol)
Mirror vertical makes use of provided
ANcrocharizontal FileCorrector j Paste Quit
Simple transform SwapCorrector WESOHE
Contrast . SpellChecker SpellCheckerRunner
Levenshtein
Reduce palette
Blur
Token T
gacd You run the
i TokenScanner spell checker
with this

