
Name:
Pennkey:

CIS 120 Midterm I
October 12, 2011

1 /25

2 /20

3 /10

4 /25

5 /20

Total /100

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 100 total points.

• There are 9 pages in this exam.

• Make sure your name and Pennkey (a.k.a. username) is on the top
of this page.

1

1. Program Design (25 points total)
An integer list l1 is a subsequence of the integer list l2 if all the elements of l1 appear in the same
order within the list l2, perhaps with other elements between them. For example, [1;2;2;3] is a
subsequence of [1;2;4;2;2;3]. Use the four-step design methodology to implement a function
called subsequence that determines whether one list is a subsequence of another.

(0 points) Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

(3 points) Step 2 is formalizing the interface. Write down the type of the subsequence function as you
might find it in a .mli file or module interface:

val subsequence : int list -> int list -> bool

(9 points) Step 3 is writing test cases. Complete the following tests with examples of the expected
behavior. We have done the first one for you. Note that some test cases are better than others,
and credit will be assigned accordingly: make sure your tests cover a sufficiently broad range
of “interesting” inputs. Fill in the description string of the run_test function with a short
explanation of why the test case is interesting.

i. let test () : bool =
true = (subsequence [1;2;2;3] [1;2;4;2;2;3])

;; run_test "comes from the problem description" test

Good answers:
(1) true = subsequence [] [1;2;3]

Nil is a subsequence of any list.

(2) false = subsequence [1;2;3] []

A non-empty list is not a subsequence of Nil

(3) true = subsequence [1;2;3] [2;1;2;3]

A subsequence might not start at the head of l2

(4) true = subsequence [1;2;] [1;2;]

A list is always a subsequence of itself.

2

(13 points) Step 4 is implementing the program. Fill in the body of the subsequence function to com-
plete the design. Do not use any list library functions (such as List.map, fold, or @) to solve
this problem.

let rec subsequence (l1:int list) (l2:int list) : bool =
begin match (l1, l2) with
| ([], _) -> true
| (x::xs, y::ys) ->

(x = y && subsequence xs ys)
|| subsequence l1 ys

| (x::_, []) -> false
end

(∗ or , without matching on tuples ∗)
let rec subsequence2 (l1:’a list) (l2:’a list) : bool =
begin match l1 with
| [] -> true
| x::xs ->

begin match l2 with
| [] -> false
| y::ys -> ((x = y) && subsequence xs ys)

|| subsequence l1 ys
end

end

3

2. List Processing (20 points)
Recall the definition of fold we saw in class:
let rec fold (combine : ’a -> ’b -> ’b) (base:’b) (l:’a list) : ’b =
begin match l with
| [] -> base
| x::tl -> combine x (fold combine base tl)

end

For each of the following programs, write the value computed for r:

a. let rec h (l:int list list) : int list =
begin match l with
| [] -> []
| x::tl -> x@(h tl) (∗ @ is the built−in ‘append’ function ∗)

end
let r : int list = h [[1;2;3];[2];[3]]

[1; 2; 3; 2; 3]

b. let rec g (f:’a -> bool) (l:’a list) : ’a list =
begin match l with
| [] -> []
| x::tl -> if (f x) then x::x::(g f tl) else x::(g f tl)

end
let r : int list = g (fun (x:int) -> x > 2) [1;2;3;4;5]

[1;2;3;3;4;4;5;5]

c. let combine (x:int) (y:int) : int = x + y
let r : int = fold combine 0 [1;2;3;4]

10

d. let m (l:int list) : int option =
begin match l with
| [] -> None
| x::tl -> Some (fold min x tl)

end
let r : int option = m [3;2;1;4;5]

Some 1

4

3. Types (10 points)
For each OCaml expression below, write down its type or write “ill typed” if there is a type error.
If an expression can have multiple types, give the most generic one. We have done the first one
for you.

int 3 + 7

int list list [1]::[]

ill typed []::[1]

string -> unit print_string

ill typed print_string::print_int::[]

’a -> ’a fun (x:’a) -> x

int (fun (x:’a) -> x) (3 + 7)

int print_string "hello"; 3 + 7

string
let x : int = 3 in
let x : string = "hello" in
x

’a option None

ill typed 42 + (Some 120)

5

4. Binary Trees and Binary Search Trees (20 points)
Recall the definition of generic binary trees:
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

a. (5 points) Circle the trees that satisfy the binary search tree invariant. (Note that we have
elided the Empty nodes from these pictures.)

(a) (b) (c) (d) (e)

3 1 3 3 2
/ \ \ / \ / \
2 4 2 2 2 0 5
/ \ \ / \
1 0 4 1 1

/
3

(b), (c), (e)

b. (8 points) Complete this definition of a function that returns the list of nodes of the given tree
using an in order (left-to-right) tree traversal. For example, the in order traversal of tree (a)

pictured above is [1;2;0;3;4]. You may use the @ (list append) operator.

let rec inorder (t:’a tree) : ’a list =
begin match t with
| Empty -> []
| Node(lt, x, rt) -> (inorder lt) @ [x] @ (inorder rt)

end

6

c. (8 points) Complete this definition of tree_transform, which converts an ’a tree to a
’b tree by applying a given function f to each node of the tree while retaining the tree’s
shape. (Note that this is analogous to the list transform function we saw in class.)

let rec tree_transform (f:’a -> ’b) (t: ’a tree) : ’b tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) -> Node(tree_transform f lt, f x, tree_transform f rt)

end

d. (4 points) Suppose you know that t is an int tree that satisfies the binary search tree
invariant. Which of the following properties must the function f : int -> int have so that
tree_transform f t also satisfies the BST invariant?

• For every x and y, if x <= y then (f x) <= (f y).
• For every x and y, if x < y then (f x) < (f y).
• For every x and y, if x <= y then (f y) <= (f x)

• For every x and y, if x < y then (f y) < (f x).

7

5. Abstract Types (20 Points total)
Suppose that S is a module that implements this interface for the abstract type of sets (taken
directly from homework 3):
module type Set = sig
type ’a set

val empty : ’a set
val is_empty : ’a set -> bool
val member : ’a -> ’a set -> bool
val add : ’a -> ’a set -> ’a set
val remove : ’a -> ’a set -> ’a set
val equal : ’a set -> ’a set -> bool
val elements : ’a set -> ’a list
val fromList : ’a list -> ’a set
val setSize : ’a set -> int

end

(8 points) Indicate whether each of the following is true or false:

a. T F A client of the set module could use the following program to determine whether l
contains 3:
let l : int list = ... (∗ construct a big int list∗)
let answer : bool = S.member 3 l

b. T F It is possible that the module S implements the type ’a set internally by doing:
type ’a set = ’a option

c. T F Given the interface above, implementing a client function
union : ’a S.set -> ’a S.set -> ’a S.set

that produces a set containing all of the elements of both of its inputs requires the
use of the S.elements function.

d. T F The add function may be defined recursively.

8

(12 points) Suppose that you have an application that uses the setSize operation extremely
often—much more often than the add and remove operations, for example. You therefore need to
implement a version of the Set module that makes calling setSize very efficient.

One way to do that is to use an internal representation of sets that stores the current size of the
set along with the elements themselves. We can therefore use the following implementation of the
Set interface, which represents sets as pairs with an invariant:

INVARIANT: if the pair (n, l) represents a set {a1, . . . , an}, then l is a list with no
duplicates containing the elements a1, . . . , an in some order, and n = length l.

This invariant lets us implement the setSize function very efficiently by using the fst operation,
which projects the first element of a pair (snd projects the second). However, we have to adapt the
rest of the operations to maintain the new invariants. We have provided the empty, is_empty, and
add functions. Complete the implementation of the remove function (which is used by add).
module SizeSet : Set = struct
type ’a set = (int * ’a list)

let empty : ’a set = (0, [])

let is_empty (s:’a set) = (fst s = 0)

(∗ version 1: one recursive function ∗)
let rec remove (x:’a) (s:’a set) : ’a set =
begin match s with
| (_,[]) -> (0,[])
| (n,y::tl) ->

let r = (n-1,tl) in
if x=y then r else
let (m,rest) = remove x r in
(m+1,y::rest)

end

(∗ version 2: helper functions ∗)
let rec remove (x:’a) (s:’a set) : ’a set =
let rec rem_list (l:’a list) : ’a list =

begin match l with
| [] -> []
| h::tl -> if h = x then tl

else h::(rem_list tl)
end

in
let elts = (snd s) in
let size = (fst s) in
let new_elts = rem_list (snd s) in
if elts = new_elts then s
else (size-1, new_elts)

let rec add (x:’a) (s:’a set) : ’a set =
let r = remove x s in
(1+(fst r), x::(snd r))

9

... (∗ other operations omitted ∗)

let setSize (s:’a set) : int = fst s
end

10

