
CIS 120 Midterm I October 12, 2012

Name (printed):
Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

SOLUTIONS

1



1. Program Design (27 points total)
Use the four-step design methodology to implement a function called intersperse that, given
a value c and a list of values, returns a new list in which c is placed between every pair of ad-
jacent values of the original list. For example, intersperse 0 [1;2;3] should yield the list
[1;0;2;0;3].

The function should be generic and work for any type of lists, not just lists of integers.

(0 points) Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

(3 points) Step 2 is formalizing the interface. Write down the type of the intersect function as you
might find it in a .mli file or module interface:

val intersperse: ’a -> ’a list -> ’a list Grading Scheme.

• -1 int -> int list -> int list instead of generic type
• -1 any argument/result is “list” instead of “’a list”
• -2 function decl instead of type (i.e. (x: ’a list) (y : ’a list) : ’a)

(12 points) Step 3 is writing test cases.
Complete the following tests with examples of the expected behavior. We have done the first
one for you. Note that some test cases are better than others, and credit will be assigned
accordingly: make sure your tests cover a sufficiently broad range of “interesting” inputs.
Fill in the description string of the run_test function with a short explanation of why the
test case is interesting.

i. let test () : bool =
[1;0;2;0;3] = (interspserse 0 [1;2;3])

;; run_test "comes from the problem description" test

Good answers:
(1) [] = intersperse 0 []

Check the Nil case (any value instead of 0 is OK too)
(2) [1] = intersperse 0 [1]

Check the singleton case
(3) [1;0;2] = intersperse 0 [1;2]

Length 2 case

Grading Scheme. 4 points per test case.
• -1 wrong answer to test
• -4 not “interesting” (duplicate)
• -1 poor or no description (i.e. description just states what the test case is, not why

it was interesting.)

2



(12 points) Step 4 is implementing the program. Fill in the body of the intersperse function to com-
plete the design. Do not use any list library functions (such as fold, or @) to solve this
problem. If you would like to use a helper function in your answer, you must define it.

let rec intersperse (c:’a) (l:’a list) : ’a list =
begin match l with
| [] -> []
| [x] -> [x]
| x::xs -> x::c::(intersperse c xs)

end

Grading scheme:

• no deduction for minor syntax errors

• -2 incorrect Nil case

• -3 incorrect Singleton case

• -5 Not recursing/pattern matching on correct list

• various other errors at discretion

3



2. List Processing (20 points)
For each of the following programs, write the value computed for r:

a. let rec h (l:int list) : int =
begin match l with
| [] -> 0
| x::xs -> x * (h xs)

end

let r : int = h [1;2;3]

0

b. let rec g (l:’a list) : ’a list =
begin match l with
| [] -> []
| [x] -> [x]
| x::y::xs -> if x < y then x::(g (y::xs)) else y::(g (x::xs))

end

let r : int list = g [1;3;2;0]

[1;2;0;3]

c. let rec f (p: ’a -> bool) (l:’a list) : ’a list * ’a list =
begin match l with
| [] -> ([], [])
| x::xs ->

let (l,r) = f p xs in
if p x then (x::l, r) else (l, x::r)

end

let r : (int list * int list) = f (fun (x:int) -> x > 0) [0;1;2;-3;4]

([1;2;4], [0;-3])

4



The last two programs refer to the following definitions.

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (x: ’a list): ’b =
begin match x with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

d. let k (x: ’a list) : ’a list =
fold (fun (h:’a) (v:’a list) -> v @ [h]) [] x

let r : int list = k [1;3;2;4]

[4;2;3;1]

e. let j (x : int list list) : int list =
let transformer (l:int list) : int =
fold (fun (x:int) (v:int) -> x + v) 0 l in

transform transformer x

let r : int list = j [[1;2;3];[4;5];[]]

[6;9;0]

Grading scheme, each answer worth four points:

• no deduction for minor syntax errors
• 1 point if the value is of the correct type
• 2 points (part c) if structure is correct
• 4 points if completely correct
• Other minors errors -1 to -4 at discretion (e.g. -1 point per wrong list item/wrong order)

5



3. Types (16 points)
For each OCaml value or function definition below, fill in the blank where the type annotation
could go or write “ill typed” if there is a type error. If an expression can have multiple types, give
the most generic one. We have done the first one for you.

Some of these definitions refer to functions from the Map1 module, which has the following
abstract interface:
module type MAP =
sig
type (’a, ’b) map
val empty : (’a, ’b) map
val is_empty : (’a, ’b) map -> bool
val mem : ’a -> (’a, ’b) map -> bool
val find : ’a -> (’a, ’b) map -> ’b
val add : ’a -> ’b -> (’a, ’b) map -> (’a, ’b) map
val remove : ’a -> (’a, ’b) map -> (’a, ’b) map
val from_list : (’a * ’b) list -> (’a, ’b) map
val bindings : (’a, ’b) map -> (’a * ’b) list

end
module Map1 : MAP = struct ... end

;; open Map1

let x : ______ (int,string) map _____________ = add 120 "is fun" empty

let a : _______int list list ________________ = (2::[])::[]

let b : ________ill typed____________________ = 2 + "three"

let c : ________(int, bool) map______________ = add 3 true empty

let d : ___(int,bool) map -> (int, bool) map_ = add 3 true

let e : ____ill typed________________________ = mem 3 [1;2;3]

let f : ____(int -> int) -> int______________ = fun (g:int -> int) -> g 3

let g : _____int -> int -> int_______________ = fun (x:int) (y:int) -> x + y

let h : _____(int,(int,int) map) map_________ = add 3 (from_list [(1,2)]) empty

Grading scheme: 2 points per answer: 0 if wrong, 2 if right.

6



4. Binary Search Trees (17 points)
Recall the definition of generic binary trees and the binary search tree insert function:
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

a. (5 points) Circle the trees that satisfy the binary search tree invariant. (Note that we have
omitted the Empty nodes from these pictures.)

(a) (b) (c) (d) (e)

4 2 2 2 2
/ \ / \ / \ \ \
2 5 5 6 5 6 5 5

\ / \ / \ / \
6 4 4 4 6 4 4

Answer: (a), (d)

b. (12 points) For each definition below, circle the letter of the tree above that it constructs or
“none of the above”.
let t1 : int tree =
insert (Node(Node(Empty, 5 Empty), 2, Node(Empty, 6, Empty))) 4

(a) (b) (c) (d) (e) none of the above
Answer: (b)

let t2 : int tree =
insert (insert (insert (insert Empty 4) 2) 5) 6

(a) (b) (c) (d) (e) none of the above
Answer: (a)

let t3 : int tree =
insert (insert (insert (insert Empty 2) 5) 4) 6

(a) (b) (c) (d) (e) none of the above
Answer: (d)

7



let t4 : int tree =
insert (insert (insert (insert Empty 5) 2) 4) 6

(a) (b) (c) (d) (e) none of the above
Answer: none of the above

8



5. Lists and Binary Trees (20 points)
This problem uses the same datatype of trees as in Problem 4, but the trees are not binary search
trees.

Consider how to compute the sum of the values at each level of an int tree. For example, given
the tree t shown below, level_sum t computes the list [3;4;5;4]. Here, 3 is the value at the
root of the tree, 4 is the sum of integers at level 1, 5 is the sum of values at level 2, and the last 4
is the sum of the values at level 3. In general, the ith element of the list is the sum of values at the
ith level of the tree (starting at i = 0).

t : int tree =
Level 0: 3 --> 3

/ \
/ \

Level 1: 2 2 --> 4 = (2 + 2)
/ \ /

Level 2: 0 1 4 --> 5 = (0 + 1 + 4)
\

Level 3: 4 --> 4

When thinking about how to implement level_sum, you created the following test code:
let leaf (i:int) : int tree = Node(Empty, i, Empty)

let t_left : int tree = Node(leaf 0, 2, leaf 1)
let t_right : int tree = Node(Node(Empty, 4, leaf 4), 2, Empty)
let t : int tree = Node(t_left, 3, t_right)

let test () : bool =
(level_sum Empty) = []

;; run_test "level_sum Empty" test

let test () : bool =
(level_sum t_left) = [2; 1]

;; run_test "level_sum left subtree" test

let test () : bool =
(level_sum t_right) = [2; 4; 4]

;; run_test "level_sum right subtree" test

let test () : bool =
(level_sum t) = [3; 4; 5; 4]

;; run_test "example from diagram" test

(Problem continues on next page.)

9



Implement the function level_sum by using the recursion pattern for binary trees.

Hints:

a. Decompose the problem into two functions: level_sum itself, and a helper function for use
in combining the results of recursive calls to level_sum.

b. The helper function should take two int list values as inputs and produce an int list.

c. The test cases for t_left and t_right give the results of calling level_sum on the sub-
trees of t. Think about how to combine those results (using helper) to get to the answer for
level_sum t.

let rec helper (l1:int list) (l2:int list) : int list =
begin match (l1, l2) with

| (_, []) -> l1
| ([], _) -> l2
| (x::xs, y::ys) -> (x+y)::(helper xs ys)

end

let rec level_sum (t:int tree) : int list =
begin match t with

| Empty -> []
| Node(lt, x, rt) ->

let l1 = level_sum lt in
let l2 = level_sum rt in

x::(helper l1 l2)
end

Grading scheme: 20 points

• -1 point @, [x]::

• -2 bad variable names

• -3 minor type error

• -3 wrong datatype

• -5 if rt=Empty —— lt=Empty then [n]

• -5 inexhaustive matches

• -5 no constructors

• -5 logic errors

• other points at our discretion

10


