Programming Languages
and Techniques
(C1S120)

Lecture 2
January 11, 2013

Program Design
OCaml Basics

Announcements

* |f you are joining us today
— See Wed’s slides/lecture notes on course website

— Sign yourself up for Piazza
http://www.piazza.com/

— Go through the first lab materials, ask if you have
guestions

— No laptops, tablets, smart phones, etc., during lecture

* Send email to tas120@seas.upenn.edu if you have
trouble registering for a recitation section

— Section 201 is overfull, will not be able to accommodate all
requests

Announcements

e Homework 1: OCaml Finger Exercises
— Practice using OCaml for simple programs
— Can start first 4 problems, will cover lists next week

— Due: Tues., Jan. 22" at 11:59:59pm (midnight)
— Start early!

* Please read Chapters 1 & 2 of the course notes,
which are available from the course web pages

— |t covers course introduction, design recipe and
introductory OCaml syntax and programming

— The concepts needed for the first parts of HW 1 are
covered

— We’'ll add more material as the course goes on...

Design

Design is the process of translating informal
specifications (“word problems”) into running code.

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?
3. Write test cases
How does the program behave on typical inputs? On unusual
ones? On erroneous ones?
4. Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

5. Revise / Refactor / Edit

CIS120 / Spring 2013

A design problem

Imagine the owner of a movie theater who has complete
freedom in setting ticket prices. The more he charges, the fewer
people can afford tickets. In a recent experiment the owner
determined a precise relationship between the price of a ticket
and average attendance. At a price of $5.00 per ticket, 120
people attend a performance. Decreasing the price by a dime
(S.10) increases attendance by 15. Unfortunately, the increased
attendance also comes at an increased cost. Every performance
costs the owner $180. Each attendee costs another four cents
(50.04). The owner would like to know the exact relationship
between profit and ticket price so that he can determine the
price at which he can make the highest profit.

(Interactive Interlude)

Step 1: Understand the problem

In this problem there are five relevant concepts:
— (ticket) price

— attendees

— revenue

— cost

— profit

There are relationships among them:

— profit = revenue — cost

So profit, revenue and cost
— revenue = price * attendees also depend on price.

— cost = $S180 + attendees * S0.04
— attendees = some function of the ticket price

Goal is to determine profit, given the ticket price

Step 2: Formalize the Interface

* Here, there is only one (mildly) interesting choice:

How should we represent money?
— option 1: integers
— option 2: floating point numbers

e Either could work*

— but integers will be much simpler to work with

* Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language...

Formalizing the Interface in OCaml

comment documents

the design decision type annotations
\ enforce the interface*
(* dollar amount 1in cen)

let profit (price:int) : int

*OCaml will let you omit these type annotations, but including them is mandatory for CIS120. Using type annotations is good
documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the first thing you should do is check that your type annotations are there and that they are what you expect.

CIS120 / Spring 2013

Step 3: Write test cases

* By looking at the informal specification, we can
calculate specific test cases

let profit five dollars : int =

let price

let attendees
let revenue
let cost

500 in

120 in

price * attendees in
18000 + 4 * attendees 1in

revenue - cost

CIS120 / Spring 2013

Step 3: Write Test Cases

By looking at the data from the informal
specification, we can calculate™ these tests:
— profit at $5.00 is $415.20

— profit at $4.90 is $476.10

Working out tests by hand also helps nail-down
corner cases and can help you understand the
problem better.

*TIP: The OCaml interactive top level loop can be used as a calculator and to play around with definitions while you’re
understanding the program and the test cases. You should record the tests you develop as assertions so that they can be run

again later when the program changes.

Writing the Test Cases in OCaml

* Record the test cases as assertions in the program:

— the command run_test executes a test

a test is just a function that takesyinput and returns true if the test succeeds

/
let test () : bool =

(profit 500) = profit five dollars
;; run_ test "profit at $5.00" test

/flet test () : bool =
(profit 490) = 47610

;; run test "profit at $4.90" test
4 _ L

\ the string identifies

the test in printed output

note the use of double semicolons
for commands
CIS120 / Spring 2013

Step 4: Implement the Behavior
profit, revenue, and cost are all easy to define:
let revenue (price : int) : int =
(attendees price) * price

let cost (price : 1int) : 1int =
18000 + 4*(attendees price)

let profit (price : int) : int =
(revenue price) - (cost price)

Apply the Design Pattern Recursively

attendees™ requires a bit of thought: | swbow
y— unimplemented

. . . functions
let attendees (price : 1nt) : 1int
failwith “unimplemented”

let test () : bool =
(attendees 500) = 120
;; run_test "attendees at $5.00" test ,

let test () : bool =
(attendees 490) = 135
;3 run test "attendees at $4.90" teste«

generate the tests

*Note that the definition of attendees must go before the definitions of cost and f h bl
revenue because the latter make use of the attendees function. Similarly, cost and rom the proolem
revenue must be defined before profit. statement first_

CIS120 / Spring 2013

Attendees vs. Ticket Price

160

140

120

100

80

60

40

20

0
$4.75

Assume a linear relationship between ticket price
and number of attendees.

Equation foraline: y=mx+b
m = (diff in attendance / diff in price) =-15/ 10
b = attendees —m * price = 120 — (-15/10)*500

attendees =-15 /10 * price + 870

$4.80 $4.85 $4.90 $4.95 $5.00 $5.05

CIS120 / Spring 2013

$5.10

$5.15

Run the program!

e One of our test cases for attendees failed...
* Debugging reveals that integer division is tricky*

e Here is the fixed version:

let attendees (price:int) : int =
-15 * price / 10 + 870

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 rounds to -1. Multiplying -15 * price before dividing by 10
increases the precision because rounding errors don’t creep in.

How not to Solve this Problem

let profit price =
price * (=15 * price / 10 + 870) -
(18000 + 4 * (=15 * price / 10 + 870))

This program is bad because it

— hides the structure and abstractions of the problem
— duplicates code that could be shared
— doesn’t document the interface via types and comments

Note that this program still passes all the tests!

Evolving/Refactoring Code

* For this simple problem, this design methodology
may seem like overkill.
— The real benefits are to be had in bigger programs

— But, even small programs evolve over time

e Suppose that, based on the problem description, you
decided to define cost in terms of the number of
attendees directly, rather than calling the attendees
from within cost.

— How do our tools and this design methodology help?

Example Refactoring: Change ‘cost’

cost is simplified:

(* atts is the number of attendees *)
let cost (atts:int) : int =
18000 + 4 * atts

... but suppose we forget to change profit, which calls
cost. (As might easily happen in a big program.)

Test Case for Profit Fails

T Ocam! Toplevel m OCam! Compiler Output E Console Q7 Error Log m
profit $5.00 = 41520

Running: profit $5.00

Test failed: profit $5.00

Process ended with exit value 0

We need to fix profit like this:

let profit (price:int) : int =
(revenue price) — (cost (attendees price))

CIS120 / Spring 2013

Using Tests

Modern approaches to software engineering advocate
test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we’ve provided one or
more tests for each of the problems. You should
start each problem by making up some more tests.

