Programming Languages
and Techniques
(C1S120)

Lecture 3
Jan 13, 2013

Value-Oriented Programming
Lists and Recursion

Announcements

Homework 1: OCaml Finger Exercises
— Due: Tuesday, Jan 22" at 11:59:59pm (midnight)

Please read Chapter 1-3 of the course notes, which
are available from the course web pages.

Lab topic this week: Debugging OCaml programs

TA office hours: on webpage (calendar) and on Piazza

Questions?

— Post to Piazza, privately if you need to include code
— My drop-by office hours: 3:30-5PM today

Value-Oriented Programming
in OCaml

See also Chapter 2 of the CIS 120 lecture
notes available from the web pages.

Caveat

Many people find programming in OCaml a little
disorienting at first. The syntax is unfamiliar, but
more importantly OCaml embodies a value-oriented

programming style that takes a little while to get
used to.

For the moment, we ask you to trust that this is all
going to feel much more natural in a couple of weeks
and enjoy the challenge of learning to think about
programming a little differently.

Value-Oriented Programming

We run programs by calculating expressions to values:

3=3 values compute to themselves
3+ 4 =7

2 * (4 + 5) =18

true && (false || true) = true

The notation <exp> = <val> means that the expression
<exp> computes to the value <val>.

Note: the symbol ‘=’ is not OCaml syntax. It’s a convenient
way to talk about OCaml syntax.

CIS120 / Spring 2013

Primitive Values

OCaml’s built-in primitive types of values include...
* int
0,1,42,-1,999
* float
3.14159, 0.123
* string
“hello world”

* bool
true, false

* |n the next few weeks, we will introduce many more
value forms, built from structured data.

Expressions

Numeric expressions (ints):

1+2 addition

1-2 subtraction
2*3 multiplication
10/ 3 integer division

10 mod 3 modulus (remainder)

From constants and operations, we can build bigger
expressions:

(1 + 2 * (10 mod 4)) / 4

*These operators can only be used with ints. Floating point operators have a . after them.

Step-wise Calculation

 We can understand = in terms of single step
calculations written ‘+—’

— Single step calculations do “the expected thing” for
primitive operations

* For example:

(2+3) * (5-2)
—5 * (5-2) because 243 +—5
—5 * 3 because 5-2 +—— 3

— 15 because 5*3 ——15

CIS120 / Spring 2013

Operators

Comparisons:

= equality (these can be used with any

<> inequality type of data — numbers,

strings, characters, etc.
< less than &)

>= greater than or equal

Boolean (logical) operators:

not logical negation (These can only be used
with boolean values. Most

&& and operators in OCaml only

|| or work for a single type of
argument.)

String operators:

A string concatenation

Conditional Expressions

if s = “positive” then 1 else -1

if day >= 6 && day <= 7
then “weekend” else “weekday”

OCaml conditionals are expressions: they can be used
inside of other expressions:

(1f 3 > 0 then 2 else —-1) * 100

if x > y then “x is bigger”
else if x < y then *“y is bigger”
else “same”

CIS120 / Spring 2013

Running Conditional Expressions

* A conditional expression yields the value of either its ‘then’-
branch expression or its ‘else’-branch expression, depending
on whether the test is ‘true’ or ‘false’.

* For example:

(1f 3 > 0 then 2 else —1) * 100
— (1f true then 2 else -1) * 100
— 2 * 100
— 200

 Note: this means that it’s not sensible to leave out the ‘else’
branch. (What would be the result if the test was ‘false’?)

(Top-level) Let Declarations

A let declaration gives a name (a.k.a. an identifier) to
the result of some expression™.

let p1 = 3.14159
let seconds per day = 60 * 60 * 24

Note that there is no way of assigning a new value to
an identifier after it is declared.

*We might sometimes call these identifiers variables, but the terminology is a bit confusing because in languages like Java
and C a variable is something that can be modified over the course of a program. In OCaml, like in mathematics, once a
variable’s value is determined, it can never be modified... As a reminder of this difference, for the purposes of OCaml we’ll
try to use the word “identifier” when talking about the name bound by a let.

Scope

Multiple declarations of the same variable or

function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

let x =1

let vy = x + 1

let x = 1000

let z = x + 2

let test () : bool =
z = 1002

;7 run test “x shadowed” test

scope of x

scope of y

scope of x
(shadows
earlier x)

scope of z

Evaluating Let Declarations

To calculate the value of a let declaration, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let x =1

let vy = x + 1

let x = 1000

let z = x + 2

let test () : bool =
z = 1002

;7 run test “x shadowed” test

Evaluating Let Declarations

To calculate the value of a let declaration, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

1=1,so
let x =1 substitute 1
let vy =1+ 1 for xin x’s
let x = 1000 >Eope
let z = x_+ 2
let test () : bool = __ note that this
z = 1002 occurrence
doesn’t

++» run test “x shadowed” test
— change

Evaluating Let Declarations

To calculate the value of a let declaration, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

1+1 = 2, so
let x = 1 substitute 2 for
let v = 2 yiny’s scope
let x = 1000 (there are no
occurrences of
let z = x + 2)
let test () : bool =
z = 1002

;7 run test “x shadowed” test

Evaluating Let Declarations

To calculate the value of a let declaration, first

calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let x =1
let v = 2
let x = 1000
let z = 1000 + 2 — 1000=1000, so
substitute 1000
let test () : bool = for x in this x’s
z = 1002 scope

;7 run test “x shadowed” test

This ‘%’ is part of
the string...it
doesn’t change.

Evaluating Let Declarations

To calculate the value of a let declaration, first
calculate the value of the right hand side and then
substitute that value for the identifier in its scope:

let
let
let
let
let

=1

= 2

1000

1002

test () : bool
1002 1002

;7 run test “x shadowed” test

X
y
% =
7 =

1000+2=1002,
so substitute
1002 for z in its

scope

Local Let Declarations

Let declarations can appear both at top-level and

nested within other expressions. scope of x is
the body of f

let £ (x:int) : 1int =

let vy = x * 10 in scope of y is
nested within
Yy © Y the body of f
let test () : bool = .
scope of fis
(f 3) = 300 the rest of the
;7 run test “test f” test program

Nested let declarations are followed by “in”.

Top-level let declarations are not.

Top-level Declarations

A top-level declaration can be either an identifier
declaration or a function declaration.

let x : 1nt = 100
let £ (k:int) : int = k * 5 + x
let v ¢ int = £ 42

The scope of each declaration is the remainder of the
program after the point where it occurs.

Unlike many other languages, identifiers and
functions can only be used after they are
declared.

Function Declarations

fUﬂCUOﬂ Nname parameter Names parameter types

let total secs \\hprs 1nt)//

(
(minutes:int
(seconds int)
: 1int
(hours * 60 + minutes) * 60 + seconds

4 N
result type

function body (an expression)

CIS120 / Spring 2013

Function Calls

Once a function has been declared, it can be invoked by
writing the function name followed by a list of
arguments. This is called function application.

total secs 5 30 22

(Note that the list of arguments is not parenthesized.)

Calculating With Functions

* To calculate the value of a function application, first calculate
values for its arguments and then substitute them for the
parameters in the body of the functions.

total secs (2 + 3) 12 17
— total secs 5 12 17 because 2+3——5
— (5*60 + 12) * 60 + 17 subst. theargs. in the body
— (300 + 12) * 60 + 17
— 312 * 60 + 17

— 18720 + 17 let total secs (hours:int)

(minutes:int)
— 18737 (seconds:int) : int =

(hours * 60 + minutes) * 60 + seconds

CIS120 / Spring 2013

Test Commands

Tests always follow the same pattern:

let test () : bool =
(attendees 500) = 120
;7 run_test "Attendees at $5.00” test

let test () : bool =
(attendees 490) = 135
;7 run test "Attendees at $4.90" test

The arguments are:

— an expression to be tested
— the expected result

— astring describing the test

The run_test command (like all commands) is prefixed by a double-
semicolon.

Such commands are the only places that semicolons should appear in your
programs (so far).

CIS120 / Spring 2013

Structured Data

A Design Problem / Situation

Suppose we have a friend who has a lot of digital music, and
she wants some help with her playlists.

She wants to be able to do things like check how many songs
are in a playlist, check whether a particular song is in a playlist,
check how many Lady Gaga songs are in a playlist, and see all
of the Lady Gaga songs in a playlist, etc.

She might want to remove all the Lady Gaga songs from her
collection.

Design Pattern

1. Understand the problem

What are the relevant concepts and how do they relate?

2. Formalize the interface

How should the program interact with its environment?

3. Write test cases

How does the program behave on typical inputs? On
unusual ones? On erroneous ones?

4. Implement the behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120 / Spring 2013

1. Understand the problem

How do we store and query information about songs?

Important concepts are:

. A playlist (a collection of songs)

. A fixed collection of gaga songs

. Counting the number of songs in a playlist

. Determining whether a playlist contains a particular
song

. Counting the number of gaga songs in a playlist

. Calculating all gaga songs in a playlist

7. Calculating all non gaga songs in a playlist

A W N -

o U

CIS120 / Spring 2013

2. Formalize the interface

Represent a song by a string (which is its name)

Represent a playlist using an immutable list of strings
Represent the collection of Lady Gaga Songs using a toplevel
definition

Define the interface to the functions:

let number of songs (pl : string list) : int =
let contains (pl : string list) (song : string) : bool =
let number of gaga songs (pl : string list) : int =

let all gaga songs (pl : string list) : string list =
let all non gaga songs (pl : string list) : string list =

List Types*

The type of lists of integers is written
int list

The type of lists of strings is written
string list

The type of lists of booleans is written
bool list

The type of lists of lists of strings is written
(string list) list

etc.

*Note that lists in OCaml are homogeneous — all of the list elements must be of the
same type. If you try to create a list like [1; “hello”; 3; true] you will get a type error.

CIS120 / Spring 2013

What is a list?

e Alistis either:

[] the empty list, sometimes called nil

or
veetail aheadvaluev, followed by a list of the
remaining elements, the tail

* Here, the ‘: :’ operator constructs a new list from a head
element and a shorter list.
— This operator is pronounced “cons” (for “construct”)

* Importantly, there are no other kinds of lists.

Example Lists

To build a list, cons together elements, ending with the

empty list:

CIS120 / Spring 2013

l::2::3::4::[] a list of four numbers
“abc”::"xyz"1:[] a list of two strings
true::[] a list of one boolean
[] the empty list

Explicitly parenthesized

(

: " is an ordinary operator like + or *, except it takes

an element and a /ist of elements as inputs:

le:(2::(32:(4::[1)))

“abc”::("xyz"::[])

true::[]

[]

CIS120 / Spring 2013

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Convenient List Syntax

Much simpler notation: enclose a list of elements in
[and] separated by ;

CIS120 / Spring 2013

[1;2;3;4]

[llabcll ; IIXYZ n]

[true]

[]

a list of four numbers

a list of two strings

a list of one boolean

the empty list

Calculating With Lists

e Calculating with lists is just as easy as calculating with
arithmetic expressions:

(2+3)::(12 / 5)::[]
— 5::(12 / 5)::[] because 243 = 5
— 5::2::] because 12/5 = 2

A list is a value whenever all of its elements are values.

3. Write test cases

let pll : string list = ["Bad Romance"; "Nightswimming";
"Telephone"; "Everybody Hurts"]

let pl2 : string list = ["Losing My Religion";
"Man on the Moon"; "Belong"]

let pl3 : string list = []

let test () : bool =
(number of songs pll) = 4
;7 run test "number of songs pll" test

Define playlists for testing.
Include some with and

without Gaga songs as well as
an empty list.

let test () : bool =
(number of songs pl2) = 3
;; run_test "number of songs pl2" test

let test () : bool =
(number of songs pl3) = 0
;7 run test "number of songs pl3" test

CIS120 / Spring 2013

