Programming Languages
and Techniques
(C1S120)

Lecture 4
Jan 16, 2013

Lists and recursion

Announcements

Homework 1: OCaml Finger Exercises
— Due: Tuesday, Jan 22" at 11:59:59pm (midnight)

Please read Chapter 1-3 of the course notes, which
are available from the course web pages.

Lab topic this week: Debugging OCaml programs

TA office hours: on webpage (calendar) and on Piazza

Questions?
— Post to Piazza, privately if you need to include code

A Design Problem / Situation

Suppose we have a friend who has a lot of digital music, and
she wants some help with her playlists.

She wants to be able to do things like check how many songs
are in a playlist, check whether a particular song is in a playlist,
check how many Lady Gaga songs are in a playlist, and see all
of the Lady Gaga songs in a playlist, etc.

She might want to remove all the Lady Gaga songs from her
collection.

Design Pattern

1. Understand the problem

What are the relevant concepts and how do they relate?

2. Formalize the interface

How should the program interact with its environment?

3. Write test cases

How does the program behave on typical inputs? On
unusual ones? On erroneous ones?

4. Implement the behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120 / Spring 2013

1. Understand the problem

How do we store and query information about songs?

Important concepts are:

. A playlist (a collection of songs)

. A fixed collection of gaga songs

. Counting the number of songs in a playlist

. Determining whether a playlist contains a particular
song

. Counting the number of gaga songs in a playlist

. Calculating all gaga songs in a playlist

7. Calculating all non gaga songs in a playlist

A W N -

o U

CIS120 / Spring 2013

2. Formalize the interface

Represent a song by a string (which is its name)

Represent a playlist using an immutable list of strings
Represent the collection of Lady Gaga Songs using a toplevel
definition

Define the interface to the functions:

let number of songs (pl : string list) : int =
let contains (pl : string list) (song : string) : bool =
let number of gaga songs (pl : string list) : int =

let all gaga songs (pl : string list) : string list =
let all non gaga songs (pl : string list) : string list =

3. Write test cases

let pll : string list = ["Bad Romance"; "Nightswimming";
"Telephone"; "Everybody Hurts"]

let pl2 : string list = ["Losing My Religion";
"Man on the Moon"; "Belong"]

let pl3 : string list = []

let test () : bool =
(number of songs pll) = 4
;7 run test "number of songs pll" test

Define playlists for testing.
Include some with and

without Gaga songs as well as
an empty list.

let test () : bool =
(number of songs pl2) = 3
;; run_test "number of songs pl2" test

let test () : bool =
(number of songs pl3) = 0
;7 run test "number of songs pl3" test

CIS120 / Spring 2013

Interactive Interlude

gaga.ml

What is a list?

e Alistis either:

[] the empty list, sometimes called nil

or
veetail aheadvaluev, followed by a list of the
remaining elements, the tail

* Here, the ‘: :’ operator constructs a new list from a head
element and a shorter list.
— This operator is pronounced “cons” (for “construct”)

* Importantly, there are no other kinds of lists.

Pattern Matching

OCaml provides a single expression for inspecting
lists, called pattern matching.

let mylist : int list = [1; 2; 3; 5] match expression

syntax is:
let y =
begin match mylist with begin match ... with
case | [1 -> 42 | o>
branches | first::rest -> first+10 eL(‘j" i
end

This case analysis is justified because there are only two shapes that a list
can have.

Note that £irst and rest are identifiers that are bound in the body of
the branch.

Calculating with Matches

e Consider how to run a match expression:
begin match [1;2;3] with

| 11 —> 42
| first::rest -> first + 10
end
Note: [1;2;3] equalsl::(2::(3::[]))
1+10
It doesn’t match the pattern [] so the first branch is
—> skipped, but it does match the pattern
11 first::restwhen first is1 and

rest is(2::(3::[1)) -
So, substitute 1 for £first in the second branch

Using Recursion Over Lists

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.
marked with rec.

let rec number of songs (pl : string list) : int
begin match pl with

| 11 >0
| (song :: rest) -> 1 + number of songs rest
end

Patterns specify the structure of
the value and (optionally) give
names to parts of it.

If the lists is non-empty, then “song”
is the first song of the list and “rest”
is the remainder of the list.

Calculating with Recursion

number of songs [“Monster”;”Teeth”]
— (substitute the list for pl in the function body)
begin match “Monster”::(“Teeth”::[]) with
| 11 >0
| (song :: rest) -> 1 + (number of songs rest)
end
—> (second case matches with rest = “Teeth”::[]
1 + (number of songs “Teeth”::[])
— (substitute the list for pl in the function body)
1 + (begin match “Teeth”::[] with
| [1 >0
| (song :: rest) -> 1 + (number of songs rest)
end
— (second case matches again, with rest = [])
1 + (1 + number of songs [])

ti rolinth nction let rec number of songs (pl : string list) : int =
— (substitute [] for p e function body) bogin matoh Bl with

| 11 ->0
| (song :: rest) -> 1 + number of songs rest
end

