Programming Languages
and Techniques
(C1S120)

Lecture 11
February 4, 2013

First-class functions

Announcements

e Guest lecturer (Richard Eisenberg) Wednesday

— Weirich OH cancelled today, see schedule for TA office hours

* Homework 4 is available
— Due Monday, February 11t at 11:59:59pm
— HigherOrderFunctions (today)
— Quad-trees & mutable state: nbody simulation (Wed)
— Lecture notes updated on website

e Midterm 1

— Scheduled in class on Friday, February 15%
— Review session Wednesday, February 13t", 6-8PM in Wu & Chen
— More details to follow!

Abstracting with
first-class functions

Finite Map Interface

type ('k,'v) map

val empty : ('k,'v) map

val mem : 'k -=> ('k,'v) map -> bool

val find : 'k -=> ('k,'v) map -> 'v

val add : 'k > 'v -> ('k,'v) map -> ('k, 'v) map
val remove : 'k -> ('k,'v) map -> ('k,'v) map

val bindings : (‘k,’'v) map -> (‘'k * ‘v) list

CIS120 / Spring 2013

Motivating design problem

Suppose you are given a finite map from students to majors,
but you wanted a map that includes only students in the
engineering school? Or only students in wharton?

type student = string

type major = string

type school = SEAS | WHARTON | SAS | NURSING

type roster = (student,major) map

let to school (m : major) : school =

let is engr (m : major) : bool = to school m = SEAS

let is wharton (m : major) : bool = to school m = WHARTON
let only engr (r : roster) : roster = ?2?2?

let only wharton (r : roster) : roster = 2?2?

Demo: Majors.ml

First Class Functions

Functions are values.

First-class Functions

* You can pass a function as an argument to another function:

let twice (f:int -> int) (x:int) : int =
f (£ x)

let add one (z:int) : int = z + 1
let z = twice add one 3

 You can return a function as the result of another function.

let make incr (n:int) : int -> int =
let helper (x:int) : int =
n + x
in

helper

CIS120 / Spring 2013

First-class Functions

* You can store functions in data structures

let add one (x:int) : int = x+1
let add two (x:int) : int = x+2
let add three (x:int) : int = x+3

let func list : (int -> 1int) list =
[add one; add two; add three]

let func list : (int -> int) list =
[make incr 1; make incr 2; make incr 3]

CIS120 / Spring 2013

Evaluating First-Class Functions

let twice (f:int -> int) (x:int) : int =
f (£ x)
let add one (z:int) : int = z + 1

twice add one 3

add one (add one 3) substitute add_one for f, 3 for x
add one (3 + 1) substitute 3 for z in add_one
add one 4 because 3+1=4

4 + 1 substitute 4 for z in add_one

DT

5 because 4+1=5

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + X in
helper

make incr 3
substitute 3 for n
— let helper (x:int) = 3 + x in helper

— 227

CIS120 / Spring 2013

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + x in
helper

make incr 3

substitute 3 for n
—— let helper (x:int) = 3 + x in helper
— fun (x:int) -> 3 + x Anonymous function value

4 \
keyword “fun”

“->” after arguments
no return type annotation

CIS120 / Spring 2013

Function values

A standard function definition:

let is engr (m : major) : bool = to school m = SEAS

really has two parts:

let is engr = fun (m:major) -> to _school m = SEAS

K L]
N Y ’
define a variable with create a function value
that value

Both definitions have the same interface and behave exactly the same:

val is _engr : major -> bool

CIS120 / Spring 2013

Anonymous functions

let is _engr (m
let is sas (m

major) : bool = to school m
major) : bool to _school m

let rec only (f : major -> bool) (r: roster)

let only engr (r : roster) : roster =
only is engr r
let only sas (r : roster) : roster =

only is sas r

SEAS
SAS

let only engr (r : roster) : roster =
only
(fun (m:major) -> to school m = SEAS) r
let only sas (r : roster) : roster =
only

(fun (m:major) -> to school m SAS) r

CIS120 / Spring 2013

Multiple Arguments

We can decompose a standard function definition:

let sum (x : int) (y:int) : int : x + y

into two parts:

let sum = fun (x:int) -> fun (y:int) -> x + y

u

\ /
\ Y g
define a variable with
that value

create a function value

Both definitions have the same interface and behave exactly the same:

val sum : int -> int -> int

CIS120 / Spring 2013

Partial Application

let sum (x:int)

(y:int) : int = x + vy

sum 3

— (fun (x:int) -> fun (y:int)

— fun (y:int)

CIS120 / Spring 2013

-> 3 + vy

-> x + vy) 3 definition

substitute 3 for x

Evaluating Partial Application

let sum = fun (x:int) (y:int) -> x + y
let add three = sum 3
let answer = add three 39

let sum = fun (x:int) -> fun (y:int) -> x + y
let add three = (fun (x:int) -> fun (y:int) -> x + y) 3
let answer = add three 39

let sum = fun (x:int) -> fun (y:int) -> x + vy
let add three = fun (y:int) -> 3 + y
let answer = add three 39

let sum = fun (x:int) -> fun (y:int) -> x + y
let add three = fun (y:int) -> 3 + y
let answer = (fun (y:int) -> 3 + y) 39

CIS120 / Spring 2013

Evaluating Partial Application

let sum = fun (x:int) -> fun (y:int) -> x + vy
let add three = fun (y:int) -> 3 + y
let answer = (fun (y:int) -> 3 + y) 39

let sum = fun (x:int) -> fun (y:int) -> x + y
let add three = fun (y:int) -> 3 + y
let answer = 3 + 39

let sum = fun (x:int) -> fun (y:int) -> x + vy
let add three = fun (y:int) -> 3 + y
let answer = 42

CIS120 / Spring 2013

List transformations

Fundamental design pattern
using first-class functions

Refactoring code: Keys and Values

let rec keys (m:('k*'v) list) : 'k list =
begin match m with
| 11 => T[]
| (k,v)::rest -> k::(keys rest)
end

let rec values (m:('k*'v) list) : 'v list =
begin match m with
| 11 => T[]
| (k,v)::rest -> v::(values rest)
end

Can we use first-class functions
to refactor code to share common
structure?

CIS120 / Spring 2013

Keys and Values

let rec helper (f:(‘k*’'v) -> ‘b) (m: ('k*'v) list)
: ‘b list =
begin match m with
| 11 -> []
| h::t -=> £ h :: helper f t
end

let keys (m:('k,’'Vv) map)
let values (m:(‘k,’'v) map)

‘k list = helper fst m
‘v list = helpejfsnd m

/

/

The argument £ controls fst and snd are functions that
what happens with the binding at access the parts of a tuple:
the head of the list let fst (x,y) = X

let snd (x,y) =y

CIS120 / Spring 2013

Going even more generic

let rec helper (f:(‘k*’'v) -> ‘b) (m: (’'k*'v) list)
: ‘b list =
begin match m with
| [1 -> []
| h::t -=> £ h :: helper f t
end

let keys (m:('k,’v) map) : ‘k list = helper fst m
let values (m:(‘'k,’v) map) : ‘v list = helper snd m

Let's make it work for ALL lists,
not just lists of tuples!

CIS120 / Spring 2013

Going even more generic

let rec helper (f:’a -> ‘b) (m:’a list)
‘b list =
begin match m with
| [1 -> []
| h::t -> (£ h) :: helper f t
end

let keys (m:('k,’v) list) : ‘k list = helper fst m

let values (m:(‘k,’'v) list) : ‘v liéi/7ﬂhelpi;ﬁsnd m

£

‘a stands for (‘k*’v)
‘b stands for ‘k

fst : (‘k*'v) -> ‘k

CIS120 / Spring 2013

Transforming Lists

let rec transform (f:’a -> ‘b) (l:’'a list) : ‘b list =
begin match 1 with

| 1 -> 1]
| h::t -> (£ h)::(transform f t)
end

List transformation (a.k.a. “mapping a function across a list”*)

* foundational function for programming with lists
* occurs over and over again
* part of OCaml standard library (called List.map)

Example of using transform:
transform is engr [“FNCE”;”CIS”;”ENGL”;"”DMD"”] =
[false;true; false;true]

*confusingly, many languages (including OCaml) use the terminology “map” for the function that
transforms a list by applying a function to each element. Don’t confuse List.map with “finite map”.

Transform examples

let £f1 (1 : string list) : string list =
transform String.uppercase 1

let £2 (1 : int 1list) : bool list =
transform (fun (x:int) -> x > 0) 1

let £3 (1 : (int*int) list) : int list =
transform (fun (x:(int*int) -> (fst x)*(snd x)) 1

fl [uan; ubn; ucn] => [“A"; “B"; MC"]
f2 [0 ; -1; 1; -2] = [false; false; true; false]

£3 [(1,2); (3,4)] = [2; 12]

CIS120 / Spring 2013

List processing

The fold design pattern

Refactoring code, again

* |sthere a pattern in the definition of these two functions?

let rec exists (1 : bool list) : bool =
begin match 1 with
| [1 -> false b _
| h :: £t => h || exists t Sgselcase.]
end imple answer when
\ the list is empty
let rec acid length (1 : id 1 st) : int =
Teci:u].n_r:agch L combine step:
: Do something with
: - + :
| x t->1 acid_length t < the head of the list
end .
and the recursive call

e Can we factor out that pattern using first-class functions?

CIS120 / Spring 2013

List Fold

let rec fold (combine: 'a -> 'b -> 'Db)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with
| [1 -> base
| x :: t -> combine x (fold combine base t)
end

let acid length (1 : acid 1list) : int =
fold (fun (x:acid) (y:int) -> 1 +y) 0 1
let exists (1 : bool list) : bool =
fold (fun (x:bool) (y:bool) -> x || y) false 1

* Fold (aka Reduce)
— Another foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (List.fold_right)

— Similar operations for other recursive datatypes (fold_tree)
CIS120 / Spring 2013

Functions as Data

We’ve seen a number of ways in which functions can be
treated as data in OCaml|

Present-day programming practice offers many more
examples at the “small scale”:

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

The idiom is useful at the “large scale”: Google’s MapReduce
— Framework for mapping across sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

